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Abstract

We investigate the use of machine learning (ML) and other robust-estimation tech-
niques in event studies conducted on single securities for the purpose of securities
litigation. Single-firm event studies are widely used in civil litigation, with billions
of dollars in settlements hinging on the outcome of the exercise. We find that reg-
ularization (equivalently, penalized estimation) can yield noticeable improvements in
both the variance of event-date excess returns and significance-test power. Thus we
think there is a role for ML methods in event studies used in securities litigation. At
the same time, we find that ML-induced performance improvements are smaller than
those based on other good practices. Most important are (i) the use of a peer index
based on returns for firms in similar industries (how this is computed appears to be
less important than that some version be included), and (ii) for significance testing,
using the SQ test proposed in Gelbach, Helland, and Klick (2013), because it is robust
to the considerable non-normality present in excess returns.



1. Introduction

The event study is one of the most frequently used tools employed by empirical economists

in testing the observable impact of events. Widely used by researchers in finance, accounting,

and the law, event studies are meant to isolate the impact of a broad range of corporate

events. They have provided evidence on the consequences of legal and regulatory changes, the

proposed benefits and costs of mergers, and the implications of corporate takeover policies.

Event studies have also featured prominently in the decades-long American experiment with

private securities litigation.

The event study technique was first used in the 1960s by financial economists to test

the speed of adjustment of prices to new information, in particular to the announcement

of a stock split (Fama, Fisher, Jensen, and Roll, 1969). While much has changed over

the intervening decades, the basic event study methodology used by most practitioners has

changed little. In a perfectly efficient market, the price of a security reflects all available

information known to the market, so in such a market the price of a security will immediately

respond to the introduction of new information. After determining the firms and dates

subject to an event, an analyst can determine its impact by calculating the difference between

the realized return on the security, and the prediction from a model of expected returns. This

difference, often called the abnormal or excess return, can be attributed to the impact of the

event, conditional on the adequacy of the model generating expected returns.

Although the academic literature featuring event studies as an empirical device is long

and developed, event studies by scholars writing for academic readers have been used over-

whelmingly to test the impact of events on a broad cross-section of securities, rather than

on one particular corporation’s stock (Brav and Heaton, 2015). Inference in such studies is

sometimes done using flexible or nonparametric methods, but usually it is based on compar-

ing t-statistics to critical values of the Student’s t distribution. As Gelbach et al. (2013) point

out, that standard approach is justified only if at least one of two conditions holds. First,

if excess returns are normally distributed, the Student’s t distribution is correct in finite
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samples. But there is considerable evidence that excess returns are not normal. Second, if

there are enough firms and dates that experience the event of interest so that a central limit

theorem can reasonably be expected to usefully apply to the estimated event effect, then the

estimated event effect—which is an average of a sort—will be approximately normal. But

Gelbach et al. (2013) observe that in single-firm event studies used for litigation, each date

of interest is functionally an event study with only 1 firm-date combination. Consequently,

the large-sample justification for standard inferential approaches also fails. The result is that

the standard approach to inference yields invalid inference in single-firm/single-event studies

of the sort commonly used in securities litigation.

In light of the increased use of event studies for legal and regulatory purposes, a nascent

literature has developed exploring potential remedies for this and other problems. Gelbach

et al. (2013) use Monte Carlo simulation to demonstrate that the standard approach used by

most analysts performs poorly in terms of Type I and Type II error rates in the period of 2000-

2007. Baker (2016) explores the empirical properties of the standard event study approach to

returns on the securities of firms in the Dow 30 and S&P 500 industries during the financial

crisis. He finds a consistent underestimation of standard errors in the presence of shifting

market volatility and inflated test rejection rates. Brav and Heaton (2015) warn judges

against having “unrealistic expectations of litigants’ ability to quantitatively decompose

observed price impacts”. Finally, Fisch, Gelbach, and Klick (2018) explore the consequences

of different design decisions on the Halliburton case, showing how attention to oft-ignored

methodological issues can have substantial implications for case determinations.

However, this literature dealt primarily with the inferential properties of single-firm event

studies, i.e., how significance tests for event-date excess returns perform in practice.1 This

makes sense given that plaintiffs bringing securities actions under SEC Rule 10b-5 must

demonstrate reliance, materiality, and loss causation, all of which often hinge in practice

on proving that price moved on dates when there were alleged material misrepresentations

1An exception is Dove, Heath, and Heaton (2019), who focus on issues involved in damages estimation.
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or disclosures of fact. As a result, the modifications to the standard approach proposed

in Gelbach et al. (2013), Baker (2016) and Fisch et al. (2018) involve suggestions for more

robust estimates of the variance of excess returns and/or the critical values used for testing

statistical significance.2 However, these modifications focus little attention on the estimators

of the coefficients used to calculate the event-date excess return.3 Given that the excess

returns are the parameters that determine the damage estimates in securities suits, it is

worthwhile to explore whether methods exist that can provide more accurate estimates of

the excess return itself.4

Event studies can be viewed as out-of-sample prediction problems. This is important

because modern machine learning (ML) methods have proven quite useful for such problems;

see, e.g., Kleinberg, Ludwig, Mullainathan, and Obermeyer (2015). In this paper, we consider

whether recently (and not so recently) developed machine learning techniques can improve

estimation of expected returns in relevant metrics.

To illustrate the utility of doing so, consider two possible candidate specifications for

estimating the expected return, indexed by j ∈ {1, 2}. Let the measure of the daily return

for firm i on date t be rit, and let the vector of variables used to predict rit be Xit. These

predictor variables typically include the market return and might also include the four Fama-

French and Carhart factors, as well as any other variables that might be used by a sufficiently

2A different question is whether classical statistical significance testing is the right approach to assessing
whether there was price impact. Work by Gelbach & Hawkins (forthcoming) addresses this question, but
for now we ignore it in this paper.

3To be sure, Baker (2016) proposes an FGLS event study method that yields different coefficient estimates
from the standard OLS ones. And Fisch et al. (2018) use a GARCH model, which also yields different
coefficient estimates. But these differences are essentially byproducts of a focus on properly estimating
second-moment properties, rather than the coefficient estimates themselves.

4Again see Dove et al. (2019)
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flexible prediction function.5 The key notational point is that every specification of the

prediction function, gj, can be viewed as mapping from the full set of predictors to the daily

return value, even if some gj functions effectively ignore some predictors.

With ζjit defined as the excess return–equivalently, the prediction error–based on specifi-

cation j, we have

rit = gj(Xit) + ζjit. (1)

Now define the difference in predicted returns for the two specifications as uit(Xit) ≡

g2(Xit) − g1(Xit); when there is no cause for confusion we suppress the argument of uit.

Plugging the definition of uit into (1) yields the identity that relates the two excess return

estimators for firm i on date t: ζ1it = ζ2it − uit. Suppose it is true that (i) uit has positive

variance and (ii) uit and ζ2it are independent. Then using variance as the metric, specification

1 is noisier than specification 2: V (ζ1it) > V (ζ2it). If g2 and g1 also have the same conditional

mean, then the two specifications have the same bias (whether or not it is zero), so speci-

fication 2 also has lower mean squared error (MSE). But even if specification 2 has greater

absolute bias than specification 1, in which case |E[uit]| > 0, as long as this bias difference

isn’t too great, specification 2 will be superior in MSE terms. This is the logic of using

MSE as the basis for measuring prediction accuracy, and it is the reason why ML estimators

might outperform conventional least squares estimators along that metric. This paper takes

5According to the CAPM model, the only significant factor in explaining the cross-section of returns is the
sensitivity of a firm’s equity price to the contemporaneous return on the market. However, as demonstrated in
Fama and French (1996), there is persistent evidence that other risk factors explain returns, and that the slope
of the regression of a security’s return on the market index (β) does not suffice to explain expected returns. A
series of papers by Fama and Ken French supported including two additional variables, involving the returns
on long-short portfolios of securities sorted along size and valuation metrics. In addition, the momentum
factor proposed by Carhart (1997) is often included. This momentum factor is based on the notion that there
is short-term serial correlation in the market, where stocks that have recently over-performed the market
will continue to overperform the market. This factor is similarly measured through a long-short portfolio of
firms sorted by recent stock market performance. Although it is rarely used in single-firm event studies for
litigation purposes, the Fama-French/Carhart “four-factor” model has been a workhorse of academic finance,
and we conduct all our simulations both with and without these factors.
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seriously such possibilities by considering the MSE performance of a large variety of return

models.

We note that MSE performance can be improved in two distinct ways. One is to provide

a better functional form of the predicted return given data Xit. That corresponds to the pre-

vious paragraph’s discussion of situations in which specification 2 is better than specification

1 along the MSE metric. Another way to improve MSE performance is to retain the same

functional form, so that the same underlying model is assumed, but to use a better way to

estimate the parameters of that fixed model. A familiar example involves a linear regression

model in which there is some non-sphericality, in which case one can improve on the MSE

of OLS-based predictions by using a lower-variance coefficient estimator such as FGLS. A

second example–one that we consider in this paper–is the use of quantile regression-based

estimation when there is non-normality in the residuals (here, excess returns). To avoid

conflating the distinct concepts of model, parameters of a functional form that is to be esti-

mated, and estimation of those parameters, we use the word “specification” to refer to the

combination of all three.

Given that event study specification selection can be conceptualized as a prediction prob-

lem, there is good reason to think we can do better than the specification commonly used

in securities litigation involving the OLS estimation of the simple market model. Work in

computer science and statistics has consistently demonstrated that OLS overfits data when

used to for prediction purposes (Tibshirani, 1996). Although OLS provides the best unbiased

linear prediction in-sample, it does so at the price of greater variance out of sample, which

can lead to comparatively poor prediction accuracy in the MSE metric. Modern machine

learning methods accept some bias in return for reducing out-of-sample variance. They do

this by “training” estimators to directly minimize out-of-sample prediction error.

Using real stock return data, we demonstrate that a number of out-of-the box statistical

approaches that are relatively easy to interpret perform better than the standard, OLS-
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based event study specifications used in court proceedings.6, 7 We find that specifications

using penalized regression generally perform well.8 Specifications that adjust for daily mar-

ket performance using data-driven peer indexes also generally perform well. Finally, we

obtain generally good performance from specifications that use a cross-validation technique

that’s robust to otherwise unmodeled time-series properties of the data generating process.

The best specifications provide noticeable improvements over event study approaches con-

ventionally used in securities litigation.

Although we have not so far conducted any formal tests, a summary measure is the

relative out-of-sample MSE of predicted excess returns for the best-performing model to the

simplest “market model” specification (which happens to be the generally worst-performing

specification). The best-performing specification makes use of both penalized regression and

data-driven peer firm choice. Its out-of-sample variance of predicted excess returns is about

87-88% of the out-of-sample variance of predicted excess returns for the simplest market

model. Given the significance recently attached to variance by Dove et al. (2019), this

reduction in variance is of more than academic significance. Large sums of money might

(appropriately) turn on it.

We thus take a second approach to measuring the relative performance of specifications.

In securities litigation milestones such as class certification or the motion to dismiss or

summary judgment stages, courts often require plaintiffs to show that excess returns are

statistically significantly different from 0 at levels such as 5% or 10%. We use our simulation

evidence to evaluate the performance of various specifications in this task. Let δ be the

event-date effect. Modifying (1) to account for this effect yields

6We are also working on applying this insight to the many-firm studies commonly used in academic
research.

7Some machine learning algorithms are more complex to understand and explain. In the interests of
keeping our discussion approachable, we exclude consideration of neural nets, which are among the more
sophisticated machine learning methods.

8As we discuss below, that is not true for specifications that seek to minimize the sum of absolute
deviations subject to penalizing constraints. This isn’t all that surprising given that we use the MSE metric to
evaluate performance, because an objective function targeting least absolute deviations is obviously different
from one that targets the sum of squared residuals.
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rit = gj(Xit) + δDit + ζjit, (2)

where Dit is an indicator variable that equals 1 on an event date and 0 otherwise. (Notice

that (1) and (2) are equivalent for non-event dates.)

We consider both the case in which there truly is no event effect, so that δ = 0, and

that in which firm value fell on the event date for reasons unrelated to Xit, so that δ < 0.

Of interest is the result of testing the null hypothesis H0 : δ = 0 when this null is true

(allowing us to evaluate actual test size) and when it is false (allowing us to evaluate actual

test power).

Following much practice, we first use the standard approach based on normal critical

values.9 Gelbach et al. (2013) point out that this approach is invalid if excess returns are

not truly normally distributed. They show that there are nontrivial consequences of using

the standard approach with real-world excess returns, whose non-normality is widely known.

Accordingly, we also use the sample quantile (SQ) test proposed by Gelbach et al. (2013).

This test works under normality but also is robust to non-normality. Our event-date test

results provide several interesting findings.

First, across all specifications, the standard approach under-rejects a true null hypothesis,

whereas the SQ test performs almost perfectly across almost all specifications. This is in

line with what Gelbach et al. (2013) found using only the simple market model specification,

so perhaps it is not surprising. But we use a more recent period than that paper, and we

also use a restricted set of firms, and we consider a much more varied set of specifications

(including the Fama-French/Carhart factors). Accordingly, our present finding provides

additional evidence in favor of the relative superiority of the SQ test over the standard t-test

approach.

9Analysts often use Student’s t critical values instead, because the test statistic has a Student’s t distri-
bution under the normality assumption. Because we have a large number of degrees of freedom, the difference
between the critical values is negligible for practical purposes.
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Second, we find that the specifications that had best performance in the MSE metric

also have noticeably better performance in the testing metric (for sufficiently large |δ|, all

tests have such high power that the difference is unimportant). Third, this power difference

is less than the improvement brought by using the SQ test rather than the standard t-test

approach, which can be substantial for intermediate values of δ.

In sum, we find that ML specifications can improve on standard ones. We also find that

when testing for statistically significant effects is an analyst’s objective, it matters how one

tests. Using a method that is robust to non-normality, namely the SQ test rather than the

standard approach, improves the performance of ML specifications considerably.

2. Prior Literature

Event study methodology in finance begain with a paper by Fama, Lawrence Fisher,

Michael Jensen, and Richard Roll in 1969. Theoretical articles by Samuelson and Mandelbrot

had demonstrated that securities trading on exchanges exhibited indicia of efficiency, as

reflected in their independence properties. But there had been little actual empirical evidence

of the speed of price adjustment to specific forms of information entering the market. Fama

et al. (1969) used the presence of stock splits to test whether there was “unusual behavior”

in the return on a security in the months leading up to the split. Notably, the event study

format they used follows the same functional form as event studies used today in court

proceedings, with the log of one plus an individual security’s returns regressed on a constant

and the log of one plus the return on a market index.

Following Fama et al. (1969), thousands of articles have been published in leading journals

using event studies to isolate the impact of a broad range of corporate events.10 Decades

later, a parallel literature developed analyzing the properties of the comparative statistical

models used for event studies. A pair of articles written by Stephen Brown and Jerold

10Kothari and Warner (2007) report that over 500 papers containing event studies were published betwen
1974 and 2000 in just the top five finance journals.
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Warner compared the ability of competing specifications to detect abnormal performance

using both monthly and daily data (Brown and Warner, 1980, 1985). Brown and Warner’s

1985 paper, which has come to define the field, declared that event studies presented few

practical difficulties when conducted using daily data. They showed that stock returns

departed from normality, but still they found OLS-based methods to be largely robust to

parametric concerns in applications of interest.

Subsequent studies tested the properties of event study methods, analyzing how fre-

quently different tests reject the null hypothesis of no abnormal performance, and the power

of specifications to detect abnormal performance when imputed (Binder, 1998). Later em-

pirical studies questioned the generalizability of Brown and Warner’s results. Chandra,

Moriarity, and Lee Willinger (1990) showed that the relative equivalence in performance be-

tween the OLS/market model specification and simpler approaches was a statistical artifact

of specification implementation. Moreover, subsequent research verified that excess returns

were not normally distributed, and suggested that in important situations, the Type I error

rate will be larger than the nominal level that holds when the assumption of normality is

correct. This is particularly true for stocks with high kurtosis (Hein and Westfall, 2004),

which is not surprising given the departure from normality entailed by this distributional

feature. Some scholars proposed using non-parametric tests of abnormal performance to

address non-normality in many-firm studies, e.g., rank and sign tests (Corrado, 1989).

Recently, scholars have scrutinized the application of academic event studies in litigation.

Corrado (2011) notes that single-security event studies rarely arise in academic literature but

are routinely proffered as evidence in court proceedings. He advises legal practitioners to

use a simple nonparametric modifications to the event study procedure that would at least

correct for the non-normality of individual stock returns.

Gelbach et al. (2013) propose another modification, which they termed the sample quan-

tile (SQ) test. To perform a lower-tailed version of this test with classical significance level

α, one ranks the estimated excess returns from the market model regression and determines
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whether the event-date excess return is more negative than the α-quantile of the empirical

distribution of estimated excess returns from the pre-event window.11 Using a dataset con-

taining the returns for all securities in the Center for Research in Security Performance’s

(CRSP) database from 2000 to 2007, Gelbach et al. (2013) uncover substantial evidence of

bias against finding statistically significant excess returns.

Baker (2016) analyzes the performance of a group of event study specifications over the

financial crisis period of 2007-2009. He finds that when volatility in the market shifts sud-

denly, standard specifications with a constant estimation period and variance estimate will

fail to reflect the changed nature of stock returns. As a proposed remedy he suggests using

either feasible generalized least squares (FGLS) or an estimator that adjusts the standard

error of the t-statistic by the ratio of changes in market volatility to account for the true

variance of market model excess returns. Fisch et al. (2018) propose dealing with this same

issue using a generalized autoregressive conditional heteroskedasticity (GARCH) estimator

for the variance of daily returns and then using daily estimates of the variance to obtain

a normalized white noise term to which the SQ test may then be applied.12 However, it

is important to note that none of the proposed remedies described above fundamentally

changes the estimation approach taken to predict the event-date excess return itself. This is

the province of the present paper.

3. Methodology

The steps necessary to conduct an event study have not changed substantially since Fama

et al. (1969). An analyst must first identify a return series covering the event at issue, ensure

that the stock trades frequently enough for each return to cover only one day (or at most a

few days), and establish the dates on which the event occurred. There are then three steps

11For an upper-tailed version, one determines whether the event-date excess return is greater than the
(1−α)-quantile; for a two-sided version, one determines whether the event-date excess return is between the
(α/2)-quantile and (1− α/2)-quantile.

12We do not implement the GARCH approach in this paper, but presumably one could do so.
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to conducting an event study: (1) defining the “event window,”, (2) calculating the excess

return of the stock over the event window, and (3) testing for statistical significance of the

excess return.

The event window is the period over which the impact of the event will be tested. Because

event studies are built upon the underpinnings of the efficient markets hypothesis, the typical

presumption is that stock price will quickly adapt to new information released to the market.

As a result, event windows (especially those used in litigation) are typically short, perhaps

as short as the one-day trading period surrounding an event. Occasionally the event window

may be extended to multiple days, particularly if the time that the information was released

to the market is uncertain, or if there is reason to believe that the information was unlikely

to be quickly absorbed into the stock price (Mitchell and Netter, 1994).13 Extending the

event-window length does risk reducing power, and it may compromise the event study’s

ability to identify abnormal performance.

After defining the event window, it is necessary to isolate the portion of the security

return attributable to the new information from general fluctuations in stock price. This is

the primary role of the event study: to determine whether estimated effects fall outside the

range that would be expected due to the usual variation in the stock’s returns. The most

significant determination is in the method used to characterize the expected return. Model

variants are generally divided into two categories: “statistical” and “economic”. Statistical

models rely only on the empirical properties of asset returns, while economic models apply

additional assumptions on investor behavior (Mackinlay, 1997). While the original develop-

ment of the event study technique was built upon the theoretical foundation of the Capital

Asset Pricing Model (CAPM), most finance scholars no longer consider the CAPM to be

an accurate model of price formation (Fama and French, 1996). Modern additions to the

standard market model event study, including the factor based approaches popularized by

Fama-French and Carhart, are based upon the predictive power of security features rather

13For an interesting example of a case in which the speed of capitalization was at issue, see In re Apollo,
Inc., Securities Litigation. ADD MORE.
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than any theoretical justification. It has been argued that economic models impose addi-

tional statistical assumptions without offering many practical advantages (Campbell, Lo,

and Mackinlay, 1997).

Recall from (1) that we write expected returns for specification k as rit = gk(Xit) + ζkit,

where rit is the measure of the daily stock return, gk is some function that captures the details

of specification k, and ζkit is the excess return under that specification on date t for firm i. If

we assume that the excess return has mean 0, then the expected return is E[rit] = gk(Xit).

As an example, the simple market model has an expectation that is an affine function of the

daily market return, so

gMM(·) = αMM +Mtβ
MM .

The associated excess return is

ζMM
it = rit − αMM +Mtβ

MM . (3)

When we view an event study as a prediction problem, our goal is to isolate the portion

of the return rit that cannot be explained with available variables Xit. That is of course true

of the conventional least squares approaches as well, but ML differs by allowing more scope

for data-driven selection of which variables are ultimately included, and how. One way to

understand ML methods is that they use more flexible g functions for the expected return.

Another is to think of them as starting with familiar expected return functions and then

using certain nonlinear alterations to the objective function. Regardless of which view one

takes, the end result is an estimator that differs from conventional least squares estimators

in its use of available data.

Below we consider a total of 32 specifications, each simulated 10,000 times using 250

estimation-set observations on a firm’s daily returns and one out-of-sample “event date”

return. The firms and event dates are randomly selected, so that event date actual and
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excess returns are not systematically related to anything about our specification choices.

The exact ways we pick the 250 dates vary a bit with specification, as described in the

discussion below.

Of the 32 specifications, 16 include the Fama-French and Carhart factors. The other 16,

including the simple market model specification described just above, do not.

Write it(b) to indicate the firm-date used as the event-date for simulation replicate b ∈

{1, 2, . . . , 10000}, so that the estimated event-date excess return for specification k is ζ̂kit(b).

At present we take four approaches to comparing performance across models–two involving

variance of the estimated event-date excess return, and two involving the performance of

significance tests based on event-date excess return.14We discuss details of these approaches

below, just before we report the corresponding empirical results.

3.1. Specifications Used

As noted, we consider 32 specifications. There are 16 distinct approaches to estimation,

and for each of these we consider two specifications: one that includes the four Fama-French

and Carhart (FFC) variables, and one that does not. Here we describe the 16 distinct

specifications.

For reference, Table 3.1 provides a list of detail on the specifications we discuss below; the

table includes columns with the specification acronym and number, as well as information

about the included explanatory variables, the objective function used, and the algorithm on

which it is based.

3.1.1. Specification 1 - Market Model (MM)

This is the basic market model approach used widely in academic research and by experts

in litigation. It models the return on a stock as a function of the return on a market index.

14We may add another approach in future versions, which would assess how the different specifications
perform at damages estimation in those situations in which the excess return would be found statistically
significant in securities litigation. This would allow us to address points made about bias in damages
estimation by Brav and Heaton (2015) and Dove et al. (2019)
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Here we use the return on the S&P 500 Index as a proxy for aggregate movement in the

stock market. The specification for the 250-day estimation window is:

rit = αMM + βMMmktit + ζMM
it , (4)

with E[ζMM
it ] = 0 given the presence of the constant and the fact that the parameters will be

estimated using OLS.15 For date 251, the estimated (equivalently, predicted) excess return

is ri,251− [α̂MM + β̂MM ×mkti,251], where (α̂MM , β̂MM) is the vector of OLS estimates of the

coefficients in equation (4).

3.1.2. Specification 2 - Market Model + Peer Index (MMPI)

In this simple extension to Specification 1, we add as a regressor the equally-weighted

daily return index from firms in the same SIC industry as firm i, which we call peerit. This

kind of peer index is commonly used in litigation. We construct our version using all firms

in the same 4-digit SIC industry as firm i, unless there are fewer than eight such firms, in

which case we use all firms in the same 3-digit SIC industry as i.16 The return specification

is:

rit = αMMPI + βMMPI
1 mktit + βMMPI

2 peerit + ζMMPI
it , (5)

and the excess returns are estimated as

ζ̂MMPI
it ≡ ri,251 − [α̂MMPI + β̂MMPI

1 ×mkti,251 + β̂MMPI
2 × peeri,251],

where (α̂MMPI , β̂MMPI
1 , β̂MMPI

2 ) is the vector of OLS estimates of the coefficients in equation

(5).

15We do not impose or assume the stronger assumption, E[ζMM
it |mktit] = 0. If this assumption did hold,

then the parameter βMM could be understood as a causal effect; without the assumption, βMM is merely a
linear projection parameter. See Chapter 2 of Wooldridge (2002) on these matters.

16If there are fewer than five such firms we drop them from consideration.
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3.1.3. Specification 3 - Median Regression (Med)

Koenker and Bassett (1978) show that estimators corresponding to the minimization of

mean-squared error can perform poorly when the residual distribution is sufficiently long-

tailed. It is now well established that stock returns are non-normal distribution and have

excess mass in the tails of the distribution (see, e.g. Gelbach et al. (2013) and references

therein). Accordingly, we consider various quantile regression-based estimators, because

Koenker and Bassett (1978) show that these can be robust to non-normality.

Specification 3 uses median regression to estimate the coefficients in specification 2. Me-

dian regression can be understood as choosing b to minimize
∑250

t=1 |ζMed
it (b)|.17 The estimated

excess return for specification 3 is ζ̂Med
it (b) ≡ ri,251−[α̂Med+β̂Med

1 ×mkti,251+β̂Med
2 ×peeri,251],

where (α̂Med, β̂Med
1 , β̂Med

2 ) is the vector of estimated median regression coefficients.

3.1.4. Specification 4 - Gastwirth Regression (GR)

This specification is based on a proposal, analyzed in the univariate context, by Gastwirth

(1966)18 to estimate regression coefficients using estimated median regression coefficients

together with estimates based on the 1/3- and 2/3-quantiles. To implement it, let β̂(τ) be

the vector of estimated τ -quantile regression coefficients for each choice of τ ∈ {1/3, 1/2, 2/3}.

Following Gastwirth, we then calculate the weighted average

β̂GR ≡ 0.3β̂

(
1

3

)
+ 0.4β̂

(
1

2

)
+ 0.3β̂

(
2

3

)

. The estimated excess returns in the Gastwirth specification is ζ̂GRit (b) ≡ rit −X ′itβ̂GR.

17Equivalently, it chooses b to minimize
∑250
t=1 ρ0.5(ζMed

it (b)), where ρτ is the check function defined so
that ρτ (ζ) = ζ[τ − 1(ζ < 0)].

18See Joseph L. Gastwirth (1966), “On Robust Procedures”, Journal of the American Statistical Associ-
ation, 61:316, 929-948, DOI: 10.1080/01621459.1966.10482185.
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3.1.5. Specification 5 - Trimean Regression (Trimean)

This is the final quantile regression specification based on Koenker and Bassett (1978).

It is similar to the Gastwirth specification, Specification 4, but it uses different weights and

quantile regression estimators from different points in the [0, 1] interval. Instead of using

the 1/3-, median-, and 2/3-quantile regression estimates, the Trimean specification uses a

weighted average of the 1/4-, median-, and 3/4-quantiles. The estimated coefficient vector

is

β̂Trimean ≡ .25[β̂

(
1

4

)
+ 2β̂

(
1

2

)
+ β̂

(
3

4

)
].

The estimated excess return for the Trimean specification is ζ̂Trimeanit (b) ≡ rit−X ′itβ̂Trimean.

3.1.6. Specification 6 - Elastic Net Regularization with 2 Factor Model (ENR)

We return now to MSE-based objective functions, introducing our first regularized regres-

sion estimator. Regularized regression alters the least-squares objective function by imposing

a penalty on coefficient magnitude. This has the effect of reducing overfitting.

We use a form of penalized regression objective function known as elastic net regular-

ization. This form allows weight on both the sum of squared coefficients and the sum of

their absolute value. Assuming there are p coefficients to estimate, elastic net regularization

entails choosing coefficients c to minimize the objective function

Q(c; a, λ) ≡ ζi(c)
′ζi(c) + λ

(
1− a

2
c′c+ a

p∑
j=1

|cj|

)
, (6)

where a and λ are regularization parameters to be chosen as part of the estimation. When

a = 1, elastic net regularization is equivalent to lasso regression, which tends to set many

coefficient estimates to zero (for this reason lasso is often used for model selection). When a =

0, elastic net regularization is equivalent to ridge regression, which tends to push coefficient

estimates toward each other.
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We don’t have strong priors on whether lasso or ridge penalties are more appropriate, so

instead of choosing a value of a a priori, we optimize over it in the estimation. To obtain our

elastic net regularization estimates of specification mean squared error, we do the following

for each set of 251 observations:

• Randomly group the data into ten random groupings, known in the ML literature as

folds.

• For each of the nine values of a ∈ {0.1, 0.2, . . . , 1} use the ten randomly created folds

with a procedure known as cross-validation, to find the minimizing value of (c′, λ); call

the resulting estimates, c∗(a) and λ∗(a).

• Denote as a∗ the value of a that yields the lowest MSE among the nine MSE-minimizing

values.

• Set β̂ENR equal to the estimates of the coefficients c with a = a∗ and λ = λ∗(a∗), i.e.,

β̂ENR = c∗(a∗).

• The estimated excess returns are calculated as usual, i.e., as ζ̂ENRit (b) ≡ rit− β̂ENRXit.

3.1.7. Specification 7 - Elastic Net Regularization with Unconstrained Peer Firm Returns

(ENR-U)

This specification generalizes specification 6 by relaxing the constraint that peer firms’

returns enter the specification through an equally weighted returns index. Specification 7

drops that constraint and estimates a distinct coefficient for each peer firm’s daily return.

Notice that this specification nests specification 6, because we obtain the peer firm index

by setting the coefficient on each of the Npeer peer firms’ returns equal to N−1peer. Thus

specification 7 is more flexible specification in terms of index creation than all the any
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specification whose regressor set is the market return and equally weighted peer index.19

For specification 7, we implement the unconstrained peer firm returns specification using

the same elastic net regularization approach as in specification 6. This means the vector of

coefficients c used to calculate estimates of ζit(c) has 2 + Npeer dimensions—one for a, one

for c1, and one for each of the Npeer firm returns.

3.1.8. Specification 8 - Regularization All Peer Firms and Forced Market Inclusion (ENR-

FMI)

This specification augments specification 7 by forcing the estimation process to include

the daily return of the market index variable. Depending on the data, specification 7’s

algorithm might drop the market index regressor before calculating coefficient estimates.

Specification 8 differs from specification 7 only in that this is not allowed: the final estimates

are based on an estimation step that includes the daily return of the market index in the

regressor set. We investigate this specification out of a belief that some experts and courts

might insist that the market index be part of the specification used to predict excess returns.

Calculating the ENR-FMI coefficient estimate is done using the same method as in specifi-

cation 8, but with the penalty terms being c′c− (cENR−FMI
1 )2 and (

∑
p |cp|)− c

ENR−FMI
1 .

3.1.9. Specification 9 - Two-Factor Model with Lasso-Based Equally Weighted Index (ENR-

LEW)

The first step of specification 9 can be thought of as a version of specification 6’s elastic

net regularization, with a set to 1. Once we have a set of selected peer firms we use them to

calculate an equally weighted peer index. This differs from specification 6 because in that

specification we use the estimated coefficients to weight peer firms’ daily returns, whereas

in specification 9 we use OLS to estimate coefficients on the market return and an equally-

19Note that if a firm were to have more than 250 peer firms, including each firm individually would be
impossible. This is another way in which penalized regression is useful, because it allows for more covariates
than observations; it does so by dropping weakly correlated controls from the estimation equation. This is
one reason lasso is frequently used for model selection problems.
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weighted peer-firm index whose member firms are constructed based on first-step estimated

lasso coefficients.20

3.1.10. Specification 10 - Two-Factor Model with Median Regularization (2FM-Med)

This specification blends specifications 3 and 6. The regressor set includes the market

index and the equally-weighted peer index, as in both those specifications. We use elastic net

regularization in this specification, as in specification 6. But instead of using the quadratic

term ζit(c)
′ζit(c) in the first part of equation (6)’s objective function Q as in specification

6, we use the sum of absolute errors,
∑250

t=1 |ζit(c)|, as in specification 3’s median regression

approach. Thus the objective function is

Q2FM−Med(c; a, λ) ≡
p∑
j=1

|cj| λ

(
1− a

2
c′c+ a

p∑
j=1

|cj|

)
. (7)

All else proceeds as in the discussion in specification 6.

3.1.11. Specification 11 - Median Regularization with Market Index and All Peer Firms

(ENR-U-Med)

This specification changes specification 10 in the same way that specification 7 changed

specification 6. Like specification 10, it uses an objective function that minimizes the sum of

absolute deviations and has regularization built in. Like specification 7, it allows peer firms’

coefficients to be determined by the data rather than using an equally-weighted average.

20First we use lasso to estimate coefficients for peer firms. We then construct the equally weighted peer
index based on those peer firms that have nonzero lasso coefficients. Then we run OLS, whose estimated
coefficients are the final ones we use to estimate excess returns. In any simulation replication on which there
are no peer firms with nonzero lasso coefficients, the last step uses OLS estimation of the one-factor market
model.
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3.1.12. Specification 12 - Median Regularization with Forced Market Index Inclusion and

All Peer Firms (ENR-FMI-U-Med)

This specification changes specification 11 in the same way that specification 8 changed

specification 7: it forces the inclusion of the daily return of the broad market index in the

final model. Otherwise this specification is computed like the one in specification 11.

3.1.13. Specification 13 - Two-Factor Local Linear Random Forest Regressions (LLRF-2F)

Random forests, as described in Breiman (2001), are a popular method for non-parametric

regression. This is in part because they require little model tuning, so that their out-of-the-

box performance is superior compared to more complex machine learning methods such as

neural nets. Random forests are forms of regression trees that are notably effective when

used with large numbers of “features”–explanatory variables, in econometric parlance–that

are not truly related to the outcome variable, as is likely the case in event studies.21 Here

we use the local linear random forest method from Friedberg, Tibshirani, Athey, and Wager

(2018), who point out that we can view random forests as an adaptive kernel method. Pairing

the random forest-generated kernel with local linear regression adjustment is desirable when

the relationship of interest is smooth, as in a regression model of the form typically estimated

with event studies. We refer interested readers to Friedberg et al. (2018) for details.

Specification 13 uses local linear random forests with two factors: a market and peer

index.

3.1.14. Specification 14 - Local Linear Random Forest Regressions With Market and Peer

Returns (LLRF-U)

This specification starts from specification 13 and then relaxes it by allowing each peer

return to enter individually, rather than forcing them to enter via an equally-weighted index.

21Of course if we knew which variables were unrelated we would simply exclude them from estimation;
the challenge to which ML methods are meant to rise is the need to use the data itself to determine which
variables are unrelated to the outcome of interest.
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3.1.15. Specification 15 - Two-Factor Time-Series Cross-Validation (TSCV-2F)

The penalized regression approaches described above estimate the penalization parame-

ters α and λ through conventional cross-validation. That method is not always optimal with

time series data, as it ignores any trend component to the relationships. Various alternative

cross-validation techniques have been proposed to address this issue. Specification 15 uses

the “evaluation on a rolling forecasting origin” method.

In this procedure, a series of test sets consisting of a single observation is used for cross-

validation. The corresponding training set consists of only those observations that occurred

prior to the observation that forms the test set (with a floor of at least 50 observations).

Thus, no future observations are used in constructing the forecast. The following diagram

illustrates the series of training and test sets. Blue observations (to the left, for those reading

in black and white) form the training sets; each red observation that immediately follows a

set of training observations forms a test set (the gray observations to the right of each red

one are left out). Prediction accuracy is computed by averaging over test sets.

Specification 15 includes two factors and the elastic net regularization penalty function

but with time-series cross-validation. Thus it is the same objective function as in specification

6, but with time-series cross-validation.
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3.1.16. Specification 16 - Time-Series Cross-Validation with Market Index and All Peer

(TSCV-U)

This specification is the same specification as specification 15, except that each peer

firm’s return is allowed to enter individually rather than as an equally-weighted index. Thus

it can also be viewed as specification 7 but with time series cross-validation.

4. Simulation Results

To test the relative predictive accuracy of the sixteen specifications described above,

10,000 unique firm-events are selected at random over the period from 2009 to 2019 in the

CRSP dataset. As is common in the literature, we exclude all unit investment trusts (SIC
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6726), real estate investment trusts (SIC 6798), and non-identifiable establishments (SIC

9999). When selecting random event dates, the security in question is required to have a

complete return series for the 250 trading dates directly preceding the event in question. As

mentioned above, in selecting peers, only other firms with complete return series over the

same period in the same four-digit SIC industry are used. If there are fewer than eight such

firms, we use peers in the same three-digit SIC industry.

4.1. Comparison Approach 1: Excess return variance normalized against

within-date in-sample variance of the simple market model

The squared value of the excess return for specification k and firm-date it(b) is ŵkit(b) ≡

(ζ̂kit(b))
2. Using the convention that the event date is labeled t = 251, the in-sample prediction

of interest for specification k on simulation replicate b is ŵki251(b). The estimated in-sample

mean squared error (MSE) for specification k is

M̂SE
k

oos ≡
1

250

250∑
i=1

ŵki251(b). (8)

Our first comparison approach is meant to deal with heteroskedasticity in excess returns.

There are some dates on which important events really did occur, and for unmodeled reasons.

Excess returns will be especially large on such days.22 One might worry that this phenomenon

will cause M̂SE
k

oos to be unduly sensitive to a relatively small number of especially high-

variance dates. We address this concern by using a metric that normalizes within-date

according to that date’s in-sample MSE for the simple market model. One approach to such

a normalization would be to compute the average, across the 10000 simulation replicates, of

the ratio of ŵki251(b) to ŵMM
i251(b). That should account for both in-sample (the 250 non-event

22Similarly, some estimation windows will encompass real events, which will tend to cause the specifica-
tions we estimate to have especially poor out-of-sample fit. That will exhibit in the form of apparently large
squared residuals on our t = 251 days.
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dates) and out-of-sample (the randomly selected event date) heteroskedasticity. But it also

runs a risk. On an event date when the (normalizing) market model happens to predict

almost perfectly due only to estimation error, rather than model signal, the denominator of

ŵki251(b)/ŵ
MM
i251(b) will be close to 0, causing the overall ratio to be extremely large. This effect

could dominate our normalized metric of performance, obscuring its signal with estimation-

induced noise. To avoid this kind of effect, we instead use the following metric for each

model k:23

R̂k
het ≡

1

10000

10000∑
b=1

 ŵki251(b)

M̂SE
MM

est(b)

 , (9)

where M̂SE
MM

est(b) ≡ 1
250

∑250
i=1 ŵit(b) is the average squared estimated excess returns over the

250-day estimation window used in simulation replicate b for the Market Model specification.

Thus, the R̂k
het metric normalizes the squared event date excess return by the in-sample

estimate of the MSE for the simple market model (i.e., the specification that includes only a

constant and the daily market return). Because this denominator is constructed by averaging

over a large sample of dates, it does not engender the signal:noise problem described just

above.

Figure 1 plots the mean of the normalized prediction errors of the 16 models with (circles)

and without (triangles) the Fama-French Carhart factors, together with 95% confidence

intervals. The order in which the specifications are listed on the vertical axis is determined

by performance in the specifications without these factors, so that the specification reported

in the top row is the one with lowest value of R̂k
het, and the one that appears in the bottom

row is the one with the greatest value.

23Note that the subscript “het” on R̂khet refers to the concern about heteroskedasticity whose possibility
motivates this metric.
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Fig. 1. Mean Squared Error By Specification: 10,000 Simulations

Note: Figure 1 plots the average normalized squared prediction error for our 16 candidate

specifications, i.e., R̂khet, according to which each event-date’s squared prediction error is nor-

malized by the mean squared error of the estimation-period residuals from the simple market

model. We plot the estimates both with (FFC) and without (No FFC) Fama/French/Carhart

Factors.

Figure 1 shows that the worst-performing specification without the FFC factors is the

simple market model. Notice that its value of R̂k
het exceeds 1: it is roughly 1.16, which means

the variance of estimated event-date excess returns for the simple market model is about
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16% greater than the in-sample variance for that same model. This difference between the

in- and out-of-sample variance illustrates the empirical importance of overfitting.

The best-performing specification, both with and without the FFC factors, is ENR-U

(specification 7). Recall that this specification uses penalization, targets the squared value

of the residual (i.e., variance), and allows the estimation algorithm to select the coefficients

on the broad market index as well as on each peer firm. This is the most flexible of the

variance-targeting penalized regression specifications we considered, so it is perhaps not

surprising that it performs best. For ENR-U, the out-of-sample event-date excess return

variance is roughly 97-98% of the in-sample variance of the simple market model.

Two other specifications are so close to ENR-U as to be essentially indistinguishable.

The ENR-FMI specification (specification 8) differs from ENR-U only in that it forces the

inclusion of the broad market index in the final estimation. The TSCV-U specification differs

from ENR-U only in that it uses a more dynamically robust method of cross-validation to

select variables and estimate coefficients.

The next 9 specifications ranked below the top triumvirate perform in relatively in-

distinguishably ways. All have out-of-sample average normalized event-date excess return

variance between 100% and 104% of the in-sample variance of the simple market model, with

or without the FFC factors included. The next 2 specifications, ENR-U-Med and LLRF-

2F, have average normalized event-date excess return variance between 104% and 107% of

the in-sample variance for the simple market model without the FFC factors. The two

worst specifications are the simple market model and the same model estimated via median

regression–specification “Med,” which is specification 3. These specifications have average

normalized variance of about 109% with the FFC factors, and 112% and 116% without them.

We can draw a number of lessons from Figure 1. One is that regularization–which is

to say, using ML algorithms–does appear to reduce event-date excess return variance. This

conclusion should be tempered in two ways. First is that the 95% confidence intervals in

Figure 1 are quite wide, suggesting that some of the reduction might be due to sampling and
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simulation noise. That said, the different R̂k
het numbers plotted in the figure are obviously

highly positively correlated across specifications, so it is difficult to draw meaningful infer-

ences based on model-specific confidence intervals. A future task for us is to appropriately

test whether the different values plotted in the figure are statistically significantly different

from each other. This task is complicated not only by their positive correlation, but also by

the obvious multiple-inferences issue that arises in such a task.

A second lesson from Figure 1 is that although including the FFC factors makes a com-

paratively large difference for the simple market model (MM), doing so generally seems to

be less important than including some sort of peer-firm adjustment. To see this, consider

the MMPI specification, which uses standard OLS estimation in a specification that includes

only the broad market index and the equally-weighted peer index. This specification does

noticeably better without the FFC factors than the simple market model does with them.

The same is true for all the specifications that include some sort of peer-firm adjustment,

with the exception of the ENR-Med specification.

Third, among the regularized specifications, the three best performers target squared

error. Fourth, these specifications either are forced to include the broad market index or

are allowed to estimate the role of peer firms in an unrestricted manner (either of these is

sufficient to perform better than the base ENR specification). Fifth, it does not appear that

time-series cross-validation is per se important: although the ENR-TSCV-U specification

is in the top group, the ENR-TSCV-2F specification is not; it performs about the same as

several other estimators that use either standard cross-validation or don’t use regularization

at all–e.g., the MMPI, Med, GR, and Trimean specifications, all of which use unpenalized

estimation algorithms but include both the market model and the equally-weighted peer

index.

In sum, the best performance in Figure 1 comes when regularization is paired with some

sort of peer-firm adjustment and the FFC factors.
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4.2. Comparison Approach 2: Excess return variance normalized against

the simple market model’s average event-date variance

Our second approach to comparing model performance is to compute the ratio of esti-

mated out-of-sample MSE for model k to the same variable for the simple market model.

That is, we compute:

R̂k
oos ≡

M̂SE
k

oos

M̂SE
MM

oos

. (10)

Notice that R̂k
oos and R̂k

het differ: R̂k
het is an average of a ratio, whereas its counterpart R̂k

oos

is a ratio of averages. Whereas R̂k
het normalizes within dates, R̂k

oos instead averages across

dates and only then normalizes. The R̂k
oos approach would be problematic if there is so

much heteroskedasticity in event-date excess returns that the variance from a small share of

firm-date pairs dominates the average of overall variances. As long as that is not the case,

R̂k
oos will be a meaningful measure of performance.24 Finally, we note that by construction

R̂MM
oos = 1, so that other specifications’ values of R̂k

oos may be regarded in terms of the

percentage reduction in out-of-sample variance they achieve by comparison to the market

model.25

Figure 2 plots the various specifications’ values of R̂k
oos in the same order as the spec-

ifications’ values of R̂k
het were plotted in 1. Although we believe no constraint forces the

specifications to perform similarly with R̂k
oos as with R̂k

het, Figure 2 indicates that, broadly

considered, they do.

Most notably, the three best-performing specifications again are ENR-U, ENR-FMI, and

ENR-TSCV-U. When the FFC factors are included, all three have average event-date excess

24Notice that R̂koos is not simply R̂khet/R̂
MM
het , because each R̂khet is an average of ratios, whose denominator,

M̂SE
MM

est(b), changes across simulation replicates indexed by b.
25As we will see momentarily, none has greater event-date excess return variance than the simple market

model without the FFC factors.
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return variance equal to roughly 85% of the variance for the simple market model without

the FFC factors. Without the FFC factors, each of the three specifications performs worse

by 1-2 percentage points.

Fig. 2. Ratios of Average Squared Residual to MM

Note: Figure 5 plots the average value of R̂koos across specifications; this is the average squared

residual for each model divided by the average squared residual for the simple market model

(MM). The models are reported in order of their predictive power in the no-FFC models, i.e.,

in the same order as in Figure 1.
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The other specifications perform in qualitatively similar ways as when we used the first

comparison approach. The most notable difference is that the ENR-LEW specification does

a good bit worse than the other eight specifications in the second-best performance group,

whereas in Figure 1 it was (marginally) the best of these 9 specifications.

All in all, though, the results in Figure 2 leave us with the same basic conclusions we

had after viewing Figure 1.

4.3. Comparison Approach 3: Significance test performance using the stan-

dard parametric testing approach

We have seen that regularization can enhance the precision of event study excess return

estimates. We now assess how important precision improvements are for significance tests

of whether excess returns are significantly different from 0. These tests are important in

securities litigation, because class certification and resoultion of motions to dismiss or for

summary judgment may turn on their results.

Comparison approach 3 considers both the Type I error rate, also known as size, and the

power (one minus the Type II error rate) of the standard approach of comparing t-statistics

to critical values based on the standard normal distribution.26 To assess actual size with

a nominal size-α test, on each simulation replicate b we “reject” the null hypothesis of no

event effect whenever the ratio of the estimated event-date excess return to its estimated

standard deviation is less than the α-quantile of the standard normal distribution:

T̂ kb ≡
ζ̂ki251(b)

RMSEk
b

< zα, (11)

where RMSEk
b ≡

√∑250
t=1(ζ

k
bt)

2

250
is the in-sample estimate of the standard deviation for the

26Adjustments for degrees of freedom are functionally irrelevant given the numbers of degrees of freedom
we have with 250 estimation dates.
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event-date excess return on simulation replicate b. We then compute the share of our 10,000

simulation replicates on which this test rejects. That share is the estimated size (equivalently,

Type I error rate) of specification k for a nominal size-α test.

To assess power, we must adjust T̂ kb to account for the “true” magnitude of the event effect

that is of interest. We assume that events of interest cause firm value to fall by the amount

δ, so that adjusted event-date returns are rδi251 = rit − δ. We consider drops of magnitude

δ ∈ {.01, .02, .03, .05, .10}; given our use of logged returns, this means we investigate power

against events that cause firm value to fall by approximately 1%, 2%, 3%, 5%, and 10%. The

adjusted event-date excess return is thus ζ̂k,δi251(b) = ζ̂ki251(b) − δ, and for our power analyses

we replace ζ̂ki251(b) with ζ̂k,δi251(b) in the test condition in 11. Because the critical value on the

right hand side of that condition is fixed, the estimated rejection rate will increase with the

assumed magnitude of the event effect. Finally, we note that size may be thought of the

rejection rate when δ = 0.

Figure 3 reports simulation results for the percentage of simulation replicates on which

these tests reject, using a significance level of α = 0.10 (so that zα = −1.28), and considering

only the 16 specifications with the FFC factors included. The dashed vertical line at 10% is

the nominal size of the test: when δ = 0, the null hypothesis of zero event effect is correct,

and a test with correct size would reject exactly 10% of the time. Instead, almost all of the

specifications reject considerably less often than that–only about 7-8% of the time.27 These

findings as to substantial size distortions echo those in Gelbach et al. (2013).

27The exceptions are the two specifications that use random forest-based local linear regression. The ver-
sion that allows an unrestricted peer index actually over-rejects almost as often as most of the specifications
under-reject; the version that uses the equally-weighted peer index rejects just below the nominal rate of
10%.
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Fig. 3. Power Analysis - Standard Approach Tests of Significance

Note: Figure 3 plots the rejection frequencies for our 16 models, estimated with the inclusion

of Fama-French/Carhart factors. The parameter δ is the level of the event effect. Rejection is

based on the standard approach–comparing t-statistics to a standard normal critical value.

For values of δ above zero–i.e., when there really was an event effect–there is some

variation in performance across specifications. The two best-performing specifications are

those that use random forest-based local linear regression, which is not surprising given

their greater Type I error rates. More notable, perhaps, is the rightward drift of the other
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models’ rejection rates when the true event effect is a drop in firm value of 1% (triangles),

2% (squares), or 3% (plus-signs). The specifications’ rejection rates are reported in the same

order they were in Figure 1, so this rightward lean indicates that specifications with lower

excess return variance according to the R̂k
het metric tend to have higher power for small to

moderate event-effect sizes. These differences might be practically significant in real-world

litigation, although investigating that question directly is beyond the scope of the present

paper.

4.4. Comparison Approach 4: Significance test performance using the sam-

ple quantile test

The poor size of the standard approach tests exhibited in Figure 3 is unsurprising given (i)

the well known non-normality of excess returns and (ii) the arguments made and evidence

provided in Gelbach et al. (2013). That paper shows that when excess returns are non-

normal, the standard approach – t-tests using critical values based on the standard normal

distribution – may lead to serious size distortions like those we see in Figure 3.

Gelbach et al. (2013) propose an alternative, based on the sample quantiles of the em-

pirical distribution function (EDF) of estimated excess returns from the estimation window.

They term their test the SQ test, and they show that as the number of dates in the estima-

tion window grows, the SQ test’s size converges to the nominal level. Thus the SQ test has

asymptotically correct size, where the asymptotics in question have to do with the estimation

window length.

Although Gelbach et al. assumed that the return specification they used was correct,

introspection shows that that assumption is unnecessary for the SQ test to have correct size.

A simple informal argument will suffice for present purposes. As long as the event date is

just like estimation-window dates but for the presence of an additive event effect, event-date

excess returns based on a fixed specification k will come from the same data generating

process as estimation-window returns, up to a location difference due to the event effect–
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which is zero under the null hypothesis anyway. The Glivenko-Cantelli theorem then implies

that the EDF of estimation-window excess returns is a consistent estimator for the true

distribution function of the event-date excess return. Accordingly, the sample quantiles of

the estimation period are consistent estimators for the true quantiles of the event-date excess

return under the null hypothesis. And that means that the sample α-quantile may be used

as a critical value for testing the null hypothesis of zero event effect. Because nothing about

this argument requires the specification in question to be correct, the SQ test should have

asymptotically correct size for each of the specifications we investigate here.

Figure 4 reports SQ test rejection rates for the same values of δ investigated using the

standard approach tests reported in Figure 3. As with the standard approach tests, we use

a nominal test size of α = 0.10. This is implemented in the SQ test by comparing the event-

date excess return on each simulation replicate to a critical value that equals the 25th most

negative estimated excess return, because that value is the sample 0.10-quantile of excess

returns.

There are two specifications whose Type I error rates depart noticeably from 10%. Each

involves the random forest-based local linear regression specifications. We believe this may be

due to a glitch in the R code implementing the optimization algorithm we used to implement

these specifications. We are still investigating that issue. (These two specifications also have

substantially greater rejection rates for values of δ above 0, which is to be expected in light

of their distorted size; we will not discuss them further in this draft.)

Otherwise, as expected, the figure shows that the Type I error percentages are virtually

identical to the nominal level of 10%. Not surprisingly, given the downward size distortions

of the standard approach, the power performance of the SQ test is also considerably better

than that of the SQ test. For example, whereas the standard approach led to rejection

percentages clustered around 25% when the true event effect was a drop in firm value of

about 1%, for the SQ test power clusters roughly around 35%. Power is noticeably elevated

with the SQ test against the other values of δ as well (with the exception of δ = 0.10, which
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is enough to push the rejection rate to approximately 100% with both testing approaches).

Fig. 4. Power Analysis - SQ Test

Note: Figure 4 plots the rejection frequencies for our 16 models, estimated with the inclusion

of Fama-French/Carhart factors. The parameter δ is the level of the event effect. Rejection

is based on the SQ test–comparing estimated event-date excess returns for each simulation

replicate to the 25th most negative estimated excess return from the estimation period for that

replicate.

As with the standard approach, the results for the SQ test indicate that specifications with
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lower prediction variance also have greater power for the smaller true event effects. However,

the power performance increase across specifications is smaller than–perhaps about half that

of–the performance increase we obtain simply by switching to the SQ test. For example,

using the SQ test with the market model yields better power against δ = 0.01 than does the

best-performing specification (ENR-U) with the standard approach.

5. Further Results

In this section we investigate whether the price of variance reduction appears to be

substantial increases in the bias of estimated excess returns. Second, we consider whether

it is possible to predict, based on the empirical excess return, for which firm-date pairs ML

algorithms will tend to overperform relative to the simple market model.

5.1. The Bias-Variance Tradeoff

Machine learning models tend to do better at prediction by allowing some in-sample bias

in return for reduced variance. As long as the increase in the squared bias is smaller than

the reduction in variance, the net impact will be a reduction in mean squared error, because

this is the sum of squared bias and variance.

If the induced bias pushed systematically in one direction, that could be a problem in the

litigation context, because the disfavored litigant could reasonably argue that ML algorithms

were biased specifically against that party. Even if it is desirable to allow additional bias in

general in order to reduce variance, fairness in litigation serves as an additional constraint.

On the other hand, bias induced via regularization and other techniques might average

out to zero across situations. In that case, ML methods would not predictably and inap-

propriately hurt one side or the other in litigation. Happily, this is an empirically testable

possibility. To test it, we calculated for each specification k the average value of the estimated
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event-date excess return from each of the 10,000 simulations we conducted.28

Fig. 5. Average Residual By Model

Note: Figure 5 plots the average event-date estimated excess return and the 95% confidence

level for our 16 models, with and without Fama-French/Carhart factors. For perspective, the

range of the x-axis is set equal to one standard deviation of the return series in our sample.

Figure 5 shows these averages. The quantile regression-based specifications seem to have

residuals with means above 0, and the other specifications tend to have residuals with means

below 0. But the magnitudes involved are basically trivial small–even the greatest mean

deviation from 0 appears to be no more than 0.0002, i.e., representing an increment to daily

returns of just 2 basis points. We conclude that whatever bias is induced by regularization

or random forest methods is for practical purposes unimportant.

28These averages are not identically 0 for any specification, because they involve out-of-sample estimated
residuals rather than in-sample ones. Of course in-sample estimated residuals will have mean exactly equal
to 0 for specifications that use least-squares.
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6. Conclusion

Event studies have been used extensively in research, and the academic consensus is that

they are powerful tools for detecting the impact of events on the price of firms’ securities.

Event studies are also widely used in civil litigation, with billions of dollars in settlements

ultimately hinging on the outcome of a potentially flawed exercise. It is now well understood

that because litigation-relevant studies usually involve only a single date, those conducting

event studies for litigation use should modify techniques created for academic use in appro-

priate ways, especially when those techniques rely importantly on normality assumptions or

central limit theorem applicability. It is also understood that single-firm event studies have

various problems related to the relatively high excess return variance they involve.

In this paper we explore whether various machine learning and other robust-estimation

techniques can be used to enhance the predictive power of excess return calculations in

event studies conducted on single securities for securities litigation. We find that estimation

with regularization (also called penalization) can yield reductions in event-date excess return

variance and improvements in test power. Our best-performing specification reduces event-

date excess return variance by about 15% relative to the simple market model with no other

variables included. It also has greater power, with improvements in rejection rates on the

order of a few percentage points against moderately sized true event effects (e.g., 1-3 log

points).

Although these modest gains could be valuable, they are smaller than performance im-

provements realized by other modifications of the simplest market model. First, simply

including a peer index based on returns for firms in related industries appears to make quite

a large difference in prediction variance, and a noticeable one in test performance. Including

the Fama-French/Carhart factors also brings improvement, although this is relatively small

once a peer index is included.

Second, performance on significance tests is markedly better using the robust SQ test

proposed by Gelbach et al. (2013) than when using the standard t-test approach with crit-
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ical values based on the normal (or Student’s t) distribution. Using the SQ test basically

eliminates size distortions that plague the standard approach,29 and it also yields substantial

power improvements for smaller true event effect sizes.

In sum, our findings indicate that ML methods can improve single-firm event study

performance in ways that could matter in litigation, but they also show that ML methods

are less important than previously suggested improvements. Of course there is no reason

one couldn’t, nor, thus, shouldn’t take advantage of both those earlier improvements and

ML methods, and that is our advice.

29The random forest-based specifications are an exception to this general rule; as noted we think there
may be a glitch in the optimization routine we used for these.
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