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Abstract

The landmark antitrust case U.S. v. Google centers on vertical contracts in which
Google pays device makers and web browsers to make Google Search the default search
engine on their products. But the competitive effects of such arrangements are not yet
well understood. To study them, I introduce a novel model of competition between two-
sided search platforms, which earn all revenues on the advertiser side. Search algorithms
“learn” and improve with use, effectively creating network effects on the consumer side.
Defaults create switching costs that “nudge” consumers toward the default platform. Due
to algorithmic learning, defaults can have significant competitive effects even if switching
costs are small. Broad defaults (those affecting a large share of users) by a dominant
platform reduce consumer welfare under most plausible conditions; they also suppress
entry and investment by laggards. However, narrow defaults (particularly by laggards)
can create positive spillovers and encourage entry and investment.
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1 Introduction

In the landmark case United States v. Google, Google is accused of monopolizing the market
for internet search.1 The case centers on agreements in which Google pays other firms, such
as mobile device makers (e.g. Apple and Samsung) and web browsers(e.g. Mozilla, Opera), to
ensure that Google Search is the default search engine on their products. These deals cover
most mobile devices sold in the United States. And about 70-80% of all search queries are
made on browsers or search apps on which Google Search is the default search engine.

A user can switch the default search engine to a competing alternative (e.g. Bing) through the
settings menu. For a moderately tech-savvy user, this is quite easy to do. Thus, it is tempting
to conclude that default status has no meaningful impact on consumer choice, since it is easily
bypassed. If this were true, default status would confer little value to a search engine. But
Google pays tens of billions of dollars annually to secure default status for Google Search.
Indeed, in 2021 it paid about $20b to Apple alone. For this immense price tag to make sense,
defaults must be somewhat “sticky.” That is, they must affect the search engine choice of an
appreciable number of consumers.

In this paper, I study the competitive effects of search engine defaults. Three important features
of the search market make this research problem especially rich. First, while we can usually
focus on price effects to gauge effects on competition and consumer welfare, this is not possible
in the search market because search engines do not charge prices to consumers. This relates
to the second important feature, which is that search engines are two-sided platforms that
earn all revenues on the advertising side. Finally, a search algorithm “learns” and improves as
consumers use it. This effectively creates direct (within-group) network effects on the consumer
side of the market, which influences competition and welfare in important ways.

To study these deals, I introduce a model of competition between two-sided search platforms,
one of which is dominant. The platforms are vertically and horizontally differentiated. Due to
algorithmic learning, there are within-group network effects on the consumer side of the market.
The platforms charge prices to advertisers, but not consumers. They compete for consumers
based on quality. Specifically, aside from its advertising price, each platform chooses a variable
(which I call the “ad intensity level”) that governs the extent to which the platform’s advertising
activities detract from the consumer experience. This generalizes a number of ideas in the
literature about how search engines exercise market power over consumers without charging
them prices, such as by increasing the number or intrusiveness of unwanted ads, by collecting
more data about user activity, or by distorting search results in ways that benefit advertisers.

When a platform obtains default status, consumers must incur a switching cost to change to
a different search platform. A default agreement may also contain restrictions that act to
magnify switching costs.2 Such deals have a biasing effect on consumer choice. It is analogous

1The trial court reached a decision a few months after this paper first appeared online. The court found
Google liable, but Google will surely appeal that decision.

2For example, the Justice Department alleges that many of Google’s deals with device makers prohibit “the
preinstallation of any rival general search services” on their devices. This is analogous to contractual restraints
in the Microsoft case that discouraged computer makers from preinstalling rival web browsers.
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to imposing a tax on all but one of the products in a market. This “nudges” consumers toward
the default platform.

So long as algorithmic learning benefits are not too strong, a default agreement involving the
dominant platform will always reduce static consumer welfare. Like a tax, switching costs
create frictions discourage adoption of rival search platforms. As a result, some consumers who
would have opted for a rival search engine will instead stick with the default platform. Due
to algorithmic learning, this exodus of users reduces the quality of rivals’ search algorithms,
leading even more consumers to abandon them.

A default agreement’s effect on competition depend partly on which platform obtains default
status. When it is the dominant platform, the agreement magnifies its perceived quality ad-
vantage over laggard competitors. This allows the dominant platform to increase unwanted
advertising activities without losing too many consumers, analogous to a monopolist charging
a large markup. By contrast, when a laggard acquires default status, the dominant platform’s
quality advantage shrinks, forcing it to behave more competitively. However, the default con-
tract achieves this by effectively reducing the dominant platform’s quality, so consumers do not
necessarily benefit.

Another relevant factor is the breadth of a platform’s default agreements—the share of search
traffic that they cover. In the baseline model (Sections 2-2.4), I consider defaults that are
as broad as possible in the sense that they apply to all search queries, regardless of what
browser or other product a consumer uses to access her preferred search engine. Under these
circumstances, a default agreement involving a laggard platform will always reduce consumer
welfare. In fact, for most parameter values, the laggard’s contract is worse for consumers than
an identical agreement favoring the dominant platform. One key reason for this is simply that
the dominant platform is more popular.3 Thus, a broad set of defaults involving a dominant
platform does not necessarily leave consumers worse off if the counterfactual alternative would
involve a laggard acquiring default status on the same broad scale.

In Section 3, I consider narrower default contracts that apply to a single browser. This leads
to spillover effects, as a default contract on one browser will generally affect users on all other
browsers. Interestingly, even if a default contract on a given browser harms all consumers
who use that browser (which is typically true), it may have positive spillovers on users of
other browsers. In fact, a laggard’s default contract will always generate positive spillovers by
forcing the dominant platform to behave more competitively on all browsers. As a result, the
laggard’s default contract can raise aggregate consumer welfare if it is sufficiently narrow. By
contrast, the dominant platform’s default contract will still generally harm consumers (even if
it is narrow), provided that algorithmic learning effects are not too strong.

Algorithmic learning magnifies the competitive effects of default agreements, because it makes
consumer demand much more responsive to small changes in most relevant variables. For
example, a modest asymmetry in platform quality could produce a large imbalance in market
shares. Consequently, a default agreement can have significant competitive effects even if

3This means that, when the dominant platform becomes the default, most consumers are nudged toward
the same option they would have picked anyway. Hence, most consumers are not directly harmed by switching
costs, although they are still typically harmed by a reduction in competition.
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switching costs are relatively low. If algorithmic learning effects are sufficiently strong, then
consumers could be better off under monopoly than competition.4 In this case, the dominant
platform’s default agreements will benefit consumers precisely because they reduce competition.
However, most research suggests that algorithmic learning is subject to diminishing marginal
returns. In an extension, I show that this makes it more likely that the dominant platform’s
default agreements reduce consumer welfare (Section 5.1).

After exploring how defaults affect competition and consumer welfare, I show that advertisers
usually benefit from default agreements involving the dominant search platform, but not those
involving a laggard. Competition for consumers leads platforms to cut back on advertising
activities that consumers dislike. While good for consumers, this makes the platform’s adver-
tising services less valuable to advertisers. Hence, advertisers tend to benefit from agreements
that soften competition on the consumer side.

I also consider dynamic incentives for entry and investment (Section 4). Default contracts
struck by laggard platforms can make entry easier and may therefore stimulate competition in
the long run. This is consistent with empirical work finding that vertical restraints by laggards
can help to facilitate competitive entry in network industries (e.g. Lee, 2013). By contrast,
the dominant platform’s default agreements make it harder for laggards to enter. They also
reduce laggards’ incentive to invest in quality. However, the dominant platform’s agreements
can potentially help to facilitate entry in adjacent markets. I also consider the possibility that
Google’s large default payments could discourage device makers (e.g. Apple) from vertically
integrating into the general search market.

Section 6 discusses policy implications. One key question is of what remedy or regulatory
intervention (if any) would be most appropriate. I discuss several possibilities that have been
proposed. A categorial ban on default agreements—or a policy mandating choice screens on all
devices and browsers—may not be the best solution. This is because, in small doses, default
status (particularly for laggards) may be a competitive stimulant, as noted above. This section
also discusses why search engine defaults are unlikely to result in lower prices of mobile devices.5
Finally, I emphasize that this paper does not suggest that default-like arrangements in other
industries are likely to raise antitrust concerns.

Related Literature

There is relatively little economic scholarship on search engine defaults. Decarolis et al. (2024)
studies Google’s recent implementation of a choice screen on Android devices in the European
Economic Area (EEA), Russia, and Turkey. They find that this caused a drop in Google’s
market share, which ranges from less than 2 percent to as much as 12 percent, depending on
the country and the choice screen. They also find no evidence that choice screen led to an
increase in the price of devices. The EEA choice screen was initially organized as an auction in
which search engines pay to appear on the screen. Ostrovsky (2023) presented a model of that

4This is a possibility that arises in many models of competition in network industries. (see, e.g., Nocke et al.,
2007; Weyl and White, 2014).

5I summarize the main reasons for this in Section 6. I provide a more detailed discussion in Appendix B.3.
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auction. However, Google has since eliminated the auction and made it free to competitors.

In an antitrust policy article, Bet et al. (2022) argue that search engine defaults could harm
consumers by degrading platform quality and undermining incentives for innovation. Choi et al.
(2023) provide a model of a tying arrangement involving a monopoly good and a tied product
that is subject to network effects. This model sheds light on Google’s requirement that device
makers preinstall a Google Search app as a condition for gaining access to the Google Play
store. The European Commission’s investigation into this app store bundling led to an order
forcing Google to implement a choice screen on Android devices in the EEA.

The most similar paper to this one is likely Chen and Schwartz (2024), which was posted
online a few weeks before this paper. They also provide a model of default agreements that
nudge consumers toward a particular brand. But there are substantial differences between
our papers. They do not focus specifically on search engines, so most of their paper does not
consider network effects (i.e. algorithmic learning), which is a core issue in my paper. They
consider homogeneous one-sided firms, whereas I focus on differentiated two-sided platforms.
And they focus heavily on the process by which firms bid for default status, while I do not.
Overall, our papers are complementary but distinct.

A number of theory papers focus on other aspects of search engine markets, such as auctions
for ad slots on a search page (e.g. Athey and Ellison, 2011) Other articles consider how search
engines may strategically distort or “obfuscate” search results to make more money from adver-
tisers (Garcia, 2023). More generally, some papers consider how digital platforms may compete
for consumer attention (e.g. Prat and Valletti, 2022).

At a broad level, this paper contributes to the literature on two-sided media platforms. The
literature is surveyed by Anderson and Jullien (2015) and Peitz and Reisinger (2015).

2 Baseline Model

There are two search platforms i = 1, 2, which are vertically and horizontally differentiated.
Platform 1 is dominant. Platform 2 is a laggard. The market is two-sided, with a unit mass
of consumers on one side and a mass m > 0 of advertisers on the other. Algorithmic learning
effectively creates direct (within-group) network effects on the consumer side. The model is of
the well-known “competitive bottleneck” format,6 meaning that consumers singlehome (they
participate on a single platform), whereas advertisers can multihome. This is a good fit for the
present context, as most consumers use a single search engine but advertisers often run ads on
more than one platform.

The “baseline model” presented in this section assumes that a default agreement is maximally
broad—it affects all consumers equally, regardless of what browser they use. Hence, at most
one platform can have default status. This simplification is useful for studying the case where
a single dominant platform acquires the default position on almost all major browsers. The

6See Armstrong (2006); Armstrong & Wright (2007).
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subsequent section explores the more general case where a default contract applies to a single
browser, and allows for the possibility that both platforms have defaults (on different browsers).

The absence of consumer-side prices raises the question of how exactly platforms compete for
consumers. For example, on the consumer side of the market, what is the analogue to a price
increase? The literature offers a number of possible answers:

• The platform could make the ads on its search page more numerous, more promi-
nent, or harder to ignore. This benefits advertisers, but it subjects consumers to
“nuisance costs” (e.g. Anderson and Jullien, 2015) or “attention costs” (e.g. New-
man, 2015; Gal and Rubinfeld, 2016).
• The platform could gather more data on its users. This is good for advertising
but bad for consumers who value their privacy (e.g. Chen and Schwartz, 2024).
• The platform could strategically distort its search results (at the expense of ac-
curacy or relevance) to induce more engagement with ads (e.g. Garcia, 2023) or to
enable advertising sellers to charge higher prices (e.g. De Corniere, 2016).

At a broad level, all of these behaviors generate the same basic tradeoff: they enhance the
platform’s advertising services, but they degrade the consumer’s experience. I attempt to
generalize such behaviors by introducing a strategic choice variable—the ad intensity level,
denoted αi for each platform i—that generates precisely this tradeoff. In effect, αi is a quality
variable that affects the two sides in opposite ways: an increase in αi makes the platform more
attractive to advertisers, but less attractive to consumers. In other words, αi governs the extent
to which the platform prioritizes advertising over consumer enjoyment.

For example, following the examples listed above, αi could represent the number of ads on the
search page; the amount of personal data that the platform gathers on search users; or the
extent to which search results are distorted in ways that benefit advertisers.

The rest of this section lays out the baseline model in detail. The following table will help to
keep track of key notations.
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Notation Definition
x A consumer’s type (her location on a Hotelling line)
z An advertiser’s type
Xi Consumer demand for platform i
Zi Advertiser demand for platform i
F (z), f(z) The CDF and PDF of z
pi The price of advertising services on platform i
αi The ad intensity level on platform i
z̃i ≡ αi − pi The marginal advertiser type on platform i
Vi The exogenous quality of platform i’s search technology
σ The cost of switching from the default platform to the non-default platform
δi A dummy with δi = 1 if platform i is the default and δi = 0 otherwise
∆ Platform 1’s technological advantage over platform 2
η The strength of network effects
µ(z̃i) ≡ F (z̃i)/f(z̃i) The inverse semi-elasticity of advertising demand on platform i

2.1 Advertisers

An advertiser has a type z ∈ R, which is distributed according to CDF F (z). We assume
F is twice continuously differentiable with density denoted f = ∂F/∂z. The support of F is
assumed to be an interval with a finite lower bound, denoted z. It may or may not have a finite
upper bound. Thus, the type space could be compact, [z, z], or infinite, [z,∞).

Advertisers with higher types benefit less from advertising, and hence have a lower willingness
to pay. Specifically, the gross benefit that an advertiser gets from an ad campaign on platform
i is (γ + αi − z)Xi. Here Xi ∈ [0, 1] is consumer demand for platform i, which specifies the
measure of consumers who participate on the platform. The parameter γ ≥ 0 captures any
benefits of advertising that are unrelated to the ad intensity level (αi). However, because we
allow z to be negative, we can normalize γ = 0 without loss of generality.7 The total price of
running an ad campaign on platform i is Xipi, where pi is the price paid for each consumer on
the platform. Thus, the net payoff an advertiser gets from joining platform i is

πi(z) = (αi − z − pi)Xi. (1)

The total payoff an advertiser gets from multihoming is simply the sum π1(z) + π2(z). Thus,
an advertiser’s participation decisions are independent: it will participate on platform i if and
only if πi(z) ≥ 0, regardless of whether it also joins platform j. The measure of advertisers
who join platform i, denoted Zi, is therefore

Zi ≡ mPr
(
πi(z) ≥ 0

)
= mF (αi − pi). (2)

This is the demand function for advertising services on platform i. Note that in general the
7We could always redefine advertiser types as ẑ = z − γ.
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advertiser side of the market is not fully covered (some advertisers do not join either platform).

2.2 Consumers and Defaults

Consumers are uniformly distributed along a Hotelling line, with locations indexed by x ∈ [0, 1].
Platform 1 (resp. platform 2) is located at x = 0 (resp. x = 1). Travel costs take the linear
form t × distance, where t > 0. A platform’s overall perceived quality among consumers has
three components:

Qualityi = Vi +Xiη − hαi (3)

The term Vi is the exogenous component of platform quality. This represents the quality of
platform i’s search technology, such as the design of its algorithm. The second term, Xiη,
captures network effects, with η ≥ 0 giving the rate at which quality rises as a platform
gains more users. Finally, hαi (where h is a positive scalar) captures the disutility consumers
experience due to the ad intensity level αi. Intuitively, one can think of the disutility hαi as
the “price” a consumer pays to use platform i’s search engine.

Because platform 1 is dominant, we assume V1 > V2. This will ensure that it attracts a majority
share of consumers in equilibrium (X1 > X2). We also assume the consumer side of the market
is fully covered in all equilibria: X1 +X2 = 1.

When one platform is the default, a consumer who wishes to use the other platform must incur
a switching cost of σ ≥ 0. Let δi = 1 if platform i is the default and δi = 0 otherwise. Both
platforms cannot be the default, and hence δ1 + δ2 ≤ 1. But we allow for the possibility that
neither platform has default status: δ1 = δ2 = 0.

A consumer at location x gets a utility of ui(x) from joining platform i, where

u1(x) = V1 − δ2σ +X1η − hα1 − tx, u2(x) = V2 − δ1σ +X2η − hα2 − t(1 − x). (4)

The marginal consumer, defined by u1(x̃) = u2(x̃), is located at

x̃ = V1 − δ2σ − hα1 − (V2 − δ1σ − hα2) + 2X1η + t− η

2t , (5)

Consumer demand levels are pinned down as X1 = x̃ and X2 = 1 − x̃. This gives rise to the
following expressions for consumer demand:

X1 = 1
2 + ∆ − h(α1 − α2)

2(t− η) X2 = 1
2 − ∆ − h(α1 − α2)

2(t− η) , (6)

where ∆ is defined by
∆ ≡ V1 − V2 + (δ1 − δ2)σ. (7)

Here ∆ is the dominant platform’s technological advantage over the laggard. This definition is
useful because we can think of a default as effectively reducing one of the quality levels V1 or V2.
Specifically, when platform i acquires default status, this effectively reduces Vj by σ. Thus, a
default either increases or decreases the dominant platform’s technology advantage, depending
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on which platform is the default.

By inspection of (6), the biasing effects of defaults manifest as vertical shifts in the demand
functions Xi. The default (resp. non-default) platform’s demand function shifts upward (down-
ward). The magnitude of these demand shifts is σ/2(t−η). Notice that, if algorithmic learning
effects are strong (large η), then these shifts can be large even if the switching costs σ is small.

Throughout the paper we assume that t > η. This is necessary for both platforms to be active
in equilibrium.8 For simplicity, we will also assume that σ is not large enough to make ∆
negative when the laggard obtains default status (i.e. we assume σ < V1 − V2). As noted
above, we allow for the possibility that neither platform is preselected by default (δ1 = δ2 = 0).
We will associate this possibility with a choice screen. A choice screen treats different search
platforms the same, and hence does not generate a biasing effect. An example of a choice screen
is depicted in Appendix B.1.

2.3 Platform Profits and Competition

Platforms earn all revenues from advertisers, since they do not charge prices to consumers. For
simplicity, we normalize platforms’ production costs to zero. Platforms compete by simultane-
ously choosing pi and αi. However, it is equivalent, and more convenient, to think of platform i
as choosing pi and z̃i, where z̃i ≡ αi − pi is the marginal advertiser type on platform i (i.e. the
type such that πi(z̃i) = 0). Notice that z̃i is a good proxy for advertiser demand (Zi), because
they are directly related by Zi = mF (z̃i). Once z̃i and pi are chosen, the ad intensity level is
pinned down as αi = z̃i + pi.

Platform i’s profits are given by

Πi = ZiXipi = mF (z̃i)Xipi, (8)

where consumer demand is now expressed in terms of z̃i and pi as

X1 = 1
2 + ∆ − h(z̃1 + p1 − z̃2 − p2)

2(t− η) , X2 = 1
2 − ∆ − h(z̃1 + p1 − z̃2 − p2)

2(t− η) . (9)

In what follows, we will make frequent use of the following function:

µ(z) ≡ F (z)
f(z) . (10)

Evaluated at z̃i, this gives the inverse semi-elasticity of demand for advertising services on
platform i.9 As others have noted, the function µ(·) is useful in characterizing demand (e.g.
Johnson, 2017). Also, its equilibrium value is a good proxy for market power (e.g. Weyl, 2010).

8If η ≥ t, then network effects are so strong that the market always “tips” into monopoly.
9To see this, note that

µ(z̃i) = F (αi − pi)
f(αi − pi)

= mF (αi − pi)
mf(αi − pi)

= − Zi

∂Zi

∂pi

= pi

εi
,
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We close this section with three technical assumptions on µ. First, we assume that advertising
demand (Zi) is strictly log-concave, which is equivalent to the condition that µ′(·) > 0.

Assumption 1: µ(z) is strictly increasing.

The derivative µ′(z) could be increasing or decreasing (or nonmonotonic). Hence, µ(z) could
be concave or convex. However, our second assumption stipulates that it cannot be too convex.

Assumption 2: µ
′(z)
µ(z) is nonincreasing.

This says that µ(z) is (weakly) log-concave. Both assumptions 1 and 2 are satisfied by most
well-known distributions with support bounded from below.10 In Section 2.4 we will give an
economic justification for assumption 2 based on revealed preference (see footnote 22). Our
final assumption simply ensures that each platform’s optimal choice of z̃i is always interior.

Assumption 3: F (z̃m) < 1, where z̃m ≡ µ−1
(

2(t− η)
h

)
.

2.4 Results

This section presents the main results for the baseline model. We focus on equilibria in which
both platforms are active, which requires that ∆ is not too large.

Proposition 1. There exists a critical threshold ∆crit > 0 such that the game has a unique
equilibrium with both platforms active whenever ∆ < ∆crit. This equilibrium is characterized
by the equations

p∗
i = µ(z̃∗

i ) (11)

and
X∗

i = h

2(t− η)µ(z̃∗
i ). (12)

Equation (11) is simply the standard inverse elasticity pricing rule.11 Equation (12) is more
interesting—it specifies how market outcomes are correlated across the two sides. Plugging the
first equation into the second, it says that consumer-side market shares (X∗

i ) are proportional
to advertising prices (p∗

i ). Given that the consumer side of the market is fully covered, this
leads to the following result:

p∗
1 + p∗

2 = 2(t− η)
h

. (13)

Thus, the sum of the platforms’ ad prices is independent of ∆, and hence is unaffected by
default agreements. By contrast, the individual prices do depend on ∆. In particular, the price

where εi ≡ −
(

∂Zi

∂pi

)
pi

Zi
is the price elasticity of advertising demand on platform i.

10Examples include the uniform, exponential, lognormal, Pareto, and chi-squared distributions, among others.
11Recall that µ(z̃i) is equal to platform i’s inverse semi-elasticity, i.e. µ(z̃i) = pi/εi. Then (11) can be written

as ε∗
i = 1, which is simply the inverse elasticity pricing rule in the special case of costless production.
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ratio is equal to the ratio of consumer-side market shares:

p∗
1
p∗

2
= X∗

1
X∗

2
. (14)

As an illustration, consider the equilibrium in the case where the model is linear.

Example (linear demand). Suppose z is uniformly distributed over [0, ℓ], so that F (z) = z/ℓ.
Then the equilibrium strategies and demand levels are

z̃∗
1 = p∗

1 = t− η

h
+ ∆

5h z̃∗
2 = p∗

2 = t− η

h
− ∆

5h

α∗
1 = 2

(
t− η

h
+ ∆

5h

)
α∗

2 = 2
(
t− η

h
− ∆

5h

)

X∗
1 = 1

2 + ∆
10(t− η) X∗

2 = 1
2 − ∆

10(t− η)

Z∗
1 = m

ℓ

(
t− η

h
+ ∆

5h

)
Z∗

2 = m

ℓ

(
t− η

h
− ∆

5h

)

The fact that z̃∗
i = p∗

i in this example reflects the fact that, when the model is linear, µ(·) is
the identify function.

2.4.1 Comparative Statics

When ∆ = 0, the equilibrium is fully symmetric.12 The proposition below clarifies how changes
in ∆—and, by extension, default contracts—affect the equilibrium. It also explains how the
strength of algorithmic learning (η) affects the equilibrium.

Proposition 2. The equilibrium exhibits the following comparative statics:

(i) z̃∗
1, p∗

1, α∗
1, and X∗

1 are strictly increasing in ∆, while z̃∗
2, p∗

2, α∗
2, and X∗

2 are strictly
decreasing in ∆. The share-weighted average level of ad intensity, X∗

1α
∗
1 + X∗

2α
∗
2, is also

strictly increasing in ∆.

(ii) z̃∗
i , p∗

i , α∗
i (i = 1, 2), and X∗

2 are strictly decreasing in η, while X∗
1 is strictly increasing

in η.

The comparative statics in part (i) tell us how default agreements affect market outcomes.
Giving default status to the dominant platform increases its market power, allowing it to raise
its ad price and its ad intensity level while simultaneously capturing more users on both sides.
By contrast, the laggard gets weaker—it loses users on both sides, and lowers both its ad
intensity level and ad price. These effect imply that the consumer side of the market becomes

12See the proof of Proposition 1.
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more concentrated. By contrast, when the laggard acquires default status, all effects just
mentioned are reversed.

Part (i) also implies that competition for consumers grows softer when the dominant platform
acquires default status. The increase in the share-weighted average ad intensity level means that
consumers are subjected to more unwanted advertising activity on average. This is analogous to
an increase in the share-weighted average price level in a traditional market. By contrast, when
the laggard becomes the default, competition for consumers becomes more intense. However,
it is important to keep in mind that a default’s impact on competitiveness is just one of several
channels through which it affects consumer welfare. We consider all the different channels in
the next section.

Because part (i) implies z̃∗
1 > z̃∗

2 , it follows that all advertisers who join platform 2 are mul-
tihomers. All other advertisers either singlehome on platform 1 (if z̃∗

2 < z ≤ z̃∗
1) or else they

are inactive (if z > z̃∗
1). Therefore, when the dominant platform acquires default status, this

increases the total number of advertisers who are active (by increasing z̃∗
1), but it also reduces

multihoming (by decreasing z̃∗
2).

Part (ii) of Proposition 2 can be understood as follows. When η increases, platforms compete
more fiercely for consumers, leading both to reduce their ad intensity levels, α∗

i . From adver-
tisers’ perspective, this is like a reduction in the quality of advertising services. This shifts
the advertising demand functions vertically downward, inducing the platforms to cut ad prices,
albeit not by enough to avoid a drop in ad sales. By inspection of (9) increasing η makes con-
sumer demand Xi more sensitive to the dominant platform’s technology advantage, ∆. Thus,
a given change in ∆ will lead more consumers to switch platforms when η is larger.13 In other
words, algorithmic learning magnifies a default’s impact on consumer-side market shares. This
can be understood in terms of a feedback loop.14

This has an important policy implication: due to algorithmic learning, a default agreement can
have significant competitive effects even if switching costs are not very large.15 As a result,
these deals may raise antitrust concerns even though they don’t restrain consumer choice as
forcefully as some more familiar vertical restraints (e.g. exclusive dealing).

2.4.2 Consumer Welfare

Aggregate consumer welfare, denoted Wc, is

Wc =
∫ X∗

1

0
u∗

1(x)dx+
∫ 1

X∗
1

u∗
2(x)dx, (15)

13One consequence of this is that the maximal sustainable quality gap ∆crit from Proposition 1 is strictly
decreasing in η.

14When platform i becomes the default, some consumers switch from platform j to platform i. Due to
algorithmic learning, this increases i’s quality and reduces j’s quality. These quality shifts then lead even more
consumers to switch from j to i, which generates additional quality shifts, and so on ad infinitum.

15This was foreshadowed by our earlier observation that a default generates vertical shifts of σ/2(t−η) in the
consumer-side demand functions (Section 2.2). This shows that σ and η contribute independently to a default’s
impact on consumer demand.
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where u∗
1(x) and u∗

2(x) are the equilibrium utilities a consumer at location x would get for joining
platform 1 or 2, respectively.16 We want to know how a default contract affects consumer welfare
relative to the benchmark where neither platform is the default (e.g. because consumers are
presented with a choice screen). The answer is not obvious, as there are three distinct channels
through which defaults affect consumer utility: competition effects (changes in ad intensity),
algorithmic learning effects, and switching costs.

Suppose platform i is the default (δi = 1). Consider the marginal effect of a small increase in
the switching cost σ. It is easy to verify that17

∂Wc

∂σ
= X∗

i

∂u∗
i

∂σ
+X∗

j

∂u∗
j

∂σ
. (16)

Hence, the marginal effect on aggregate consumer welfare is just the share-weighted sum of the
utility effects experienced by users on each platform.18 Consider first the marginal utility effect
on users of the default platform:

∂u∗
i

∂σ
= ∂X∗

i

∂σ
η︸ ︷︷ ︸

learning
effect (> 0)

−h
∂α∗

i

∂σ︸ ︷︷ ︸
competition
effect (< 0)

(17)

These users experience a positive algorithmic learning effect, since the default platform gains
market share (X∗

i increases). But they also experience a negative competition effect, because
the default platform gains market power, leading it to raise ad intensity (α∗

i increases). Next,
consider the marginal utility effect on users of the non-default platform, j:

∂u∗
j

∂σ
= −1︸︷︷︸

switching
cost effect

(< 0)

+
∂X∗

j

∂σ
η︸ ︷︷ ︸

learning
effect (< 0)

−h
∂α∗

j

∂σ︸ ︷︷ ︸
competition
effect (> 0)

(18)

Thus, users on the non-default platform also experience a learning effect and a competition
effect, but the sign of each effect is now reversed, since the default leads X∗

j and α∗
j to fall.

These users also experience a third marginal effect: because there is a cost σ of adopting the non-
default platform, users on that platform sustain a negative switching cost effect, ∂(−σ)

∂σ
= −1.

Proposition 3. Suppose platform i is the default, and let j ̸= i.

(i)
∂u∗

j

∂σ
< 0 in all cases.

(ii) If η ≤ 2
3t, then ∂u∗

i

∂σ
< 0. But if η is sufficiently larger than 2

3t, then ∂u∗
i

∂σ
> 0.

Thus, unsurprisingly, a default always harms consumers on the non-default platform.19 As for
16Explicitly: u∗

1(x) = V1 − δ2σ + X∗
1 η − hα∗

1 − tx and u∗
2(x) = V2 − δ1σ + X∗

2 η − hα∗
2 − t(1 − x).

17This uses the fact that u∗
1(X∗

1 ) = u∗
2(X∗

1 ).
18Note that the marginal utility effects ∂u∗

k

∂σ do not depend on the consumer’s location x.
19In fact, for these users, the negative switching cost effect always dominates the positive competition effect,
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users of the default platform, their marginal utiliy effect can be positive, but only if η is quite
large. The value of η at which ∂u∗

i /∂σ changes sign can fluctuate as σ grows, but it is always
strictly greater than 2

3t and strictly less than t. (See the proof for details.) We can use these
results to determine the cumulative effect of the default on consumer welfare.

Proposition 4. Defaults affect aggregate consumer welfare (Wc) as follows:

(i) If the laggard is the default, then Wc strictly falls in all cases.

(ii) If the dominant platform is the default, then Wc strictly falls whenever η ≤ 2
3t. But if η

is sufficiently larger than 2
3t, then Wc strictly increases.

For the dominant platform’s default to increase consumer welfare, η must be very large. The
gains to users on the dominant platform must outweigh the harm to other consumers. However,
the fact that welfare rises when η is very large has little to do with defaults specifically. Rather,
it reflects a property of the market itself: when algorithmic learning effects are very strong, we
are effectively in a natural monopoly regime where consumers are better off under monopoly
than under competition. In this regime, any anticompetitive arrangement that increases market
concentration (e.g. a merger) will raise consumer welfare. An additional caveat is that, if
algorithmic learning benefits diminish with scale (as most research suggests), it becomes much
less likely that the dominant platform’s default could raise consumer welfare (Section 5.1).

In the baseline game, the laggard’s default can never raise consumer welfare. For welfare to rise,
the default must generate a large increase in algorithmic learning benefits. If we add up these
benefits for all consumers in the market, we get X∗

1 (X∗
1η) +X∗

2 (X∗
2η) = HHI × η, where HHI

is the Herfindahl index. Thus, for a default to increase consumer welfare, it must increase
market concentration. But a default by the laggard does just the opposite, since it makes
the market more competitive. Importantly, however, these are static results—they take the
laggard’s existence as given. As we show later, when entry is endogenous, a laggard’s default
contract can benefit consumers by facilitating entry (Section 4). Additionally, when defaults
have limited scope, a laggard’s default can increase static consumer welfare (Section 3).

Proposition 4 implies that, when η is very large, consumers prefer a default favoring the default
platform to a default favoring the laggard. But what if η is not that large, so that a default
by either platform would reduce consumer welfare? Even in this case, consumers will usually
prefer the dominant platform to be the default, rather than the laggard. This is because the
dominant platform is more popular (X∗

1 > X∗
2 ). Hence, when it acquires default status, most

consumers are nudged toward the same option they would have picked anyway.20 Despite this, it
is possible for the dominant platform’s default to be more harmful than the laggard’s, although
this requires a rather demanding condition.

Proposition 5. If η is sufficiently small and µ′′(·) is sufficiently negative, then a default favor-
ing the dominant platform is more harmful to consumers than a default favoring the laggard.

so their utility would fall even without a negative learning effect.
20Thus, most consumers avoid the switching cost. But they are still harmed by a reduction in competition.
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Our assumptions do not constrain the sign of µ′′(·), so most allowed specifications of µ(·) won’t
satisfy the condition in Proposition 5. The intuition for the result is that, if µ(·) is highly
concave (µ′′(·) ≪ 0), then a change in ∆ elicits a much larger change in α∗

1 than in α∗
2, which

makes the dominant platform’s default more painful and the laggard’s less painful.21

2.4.3 Advertiser Surplus

How do default agreements affect advertisers? Aggregate advertiser surplus, denoted Wa, is

Wa =
∫ z̃∗

1

z
π∗

1(z)f(z)dz +
∫ z̃∗

2

z
π∗

2(z)f(z)dz. (19)

Here π∗
i (z) is the equilibrium payoff a type-z advertiser gets from joining platform i, while z

is the lower bound on the support of F . It turns out that advertisers like default agreements
when they favor the dominant platform, but not if they favor the laggard.

Proposition 6. A default favoring the dominant platform strictly increases aggregate advertiser
surplus (Wa), whereas a default favoring the laggard strictly reduces it.

This result reflects two things. First, recall that a default for the dominant platform (resp.
laggard) makes competition for consumers less (more) intense. But advertisers don’t like it
when consumer-side competition is intense, since this puts downward pressure on ad intensity
levels (αi), which feels like a quality reduction to advertisers. Second, competition on the
advertiser side is always soft, even if competition on consumer side is intense. This reflects
a well-known feature of platform competition models where one side (consumers) singlehomes
and the other side (advertisers) can multihome: the multihomers do not view the platforms
as close substitutes, since each confers access to a distinct set of singlehomers to interact with
(Armstrong, 2006; Armstrong and Wright, 2007). As a result, the usual harms associated with
reduced competition show up mainly on the singlehoming side.

2.4.4 Platform Willingness To Pay for Defaults

Both platforms would benefit from being the default and hence would be willing to pay for that
privilege. However, the dominant platform is willing to outbid the laggard.22

Proposition 7. Platform 1’s willingness to pay for default status is strictly larger than that of
platform 2.

21This is explained in detail in Appendix B.2.
22The proof hinges on the fact that µ is log-concave (Assumption 2). If that assumption were violated, µ

could be extremely convex to the point that a small increase in ∆ generates virtually zero increase in α∗
1, but

a very large reduction in α∗
2. (For an explanation of this, see Appendix B.2.) In that case, the increase in ∆

could reduce the laggard’s profits by more than it raises the dominant platform’s profits. We would then expect
the laggard to outbid the dominant platform. However, in practice, Google outbids all smaller search engines
for default status on most major web browsers. This provides some additional justification for Assumption 2.
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This result can be viewed as an application of Gilbert and Newbery (1982), which explained
that a dominant firm generally gains more profits by maintaining its technological advantage
over a laggard than the laggard would gain by catching up to the dominant firms.

3 Browser-Specific Defaults and Spillovers

The baseline model considers defaults that are as broad as possible—they affect all consumers
equally, no matter what browser they use. This is useful for considering the case where a single
platform acquires the default position on most or all browsers. But in practice, a platform’s
default coverage need not be that broad. To that end, we now generalize the model so that a
default contract applies to a single browser, and thus directly affects only subset of consumers.
We also allow for the possibility that both platforms have defaults (on different browsers).

As demonstrated below, this leads to some qualitatively new effects. First, in this setting, de-
fault agreements generate spillovers—a default on one browser affects users on other browsers.
And, interestingly, these spillovers can be positive—and can potentially lead aggregate con-
sumer welfare to rise—even if the default harms all consumers on the browser it applies to.
Second, this generalization allows us to consider how the breadth of a default agreement (the
share of consumers directly affected by it) shapes its effects. Finally, it shows how competing
defaults “interact” in the sense that each one influences the welfare effects of the other.

We now suppose there are two search access points, which we will call “browser 1” and “browser
2.” The fraction of consumers who use browser k is λk ≥ 0, where λ1+λ2 = 1. We are interested
in the case where each search engine has default status on at most one browser.23 To this end,
we will assume that platform 1 is the default on browser 1, while platform 2 is the default on
browser 2. The switching costs from these deals are denoted σ1 ≥ 0 and σ2 ≥ 0, respectively.24

We make the following assumptions:

• A consumer’s browser selection is exogenously fixed and independent of her loca-
tion, x.
• Each search platform chooses a single ad intensity level αi, which applies to both
browsers.
• Network benefits depend on the total number of consumers who use a given search
platform, not on how they are allocated between browsers.
• An advertiser’s payoff from using a given platform depends on the total number of
consumers who use that platform, not on how they are allocated between browsers.25

Consequently, advertiser payoffs are the same as in the baseline game.

Consider a consumer at location x who uses browser k. Her utility from joining search platform
23The baseline game already studied the case where one platform is the default on all access points.
24In general σ1 ̸= σ2, as it may be easier to switch search engines on one browser than the other. Also, as

noted above, a default contract may include restrictions that raise switching costs (footnote 2).
25In other words, a search platform gives advertisers equal access to all of its consumers across all browsers.
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i is denoted uk
i (x). Thus, there are four utility functions, one for each browser-search platform

combination. They are:

u1
1(x) = V1 + ηX1 − hα1 − tx u1

2(x) = V2 − σ1 + ηX2 − hα2 − t(1 − x)
u2

1(x) = V1 − σ2 + ηX1 − hα1 − tx u2
2(x) = V2 + ηX2 − hα2 − t(1 − x)

To make sense of this, recall that platform i is the default platform on browser k if and only if
i = k. Thus, whenever i ̸= k, the utility uk

i includes a switching cost −σk. As in the baseline
game, Xi represents the total number of consumers who use search platform i. The value of Xi

can be decomposed as
Xi = λ1X1

i + λ2X2
i , (20)

where Xk
i is platform i’s market share on browser k. These shares are given by Xk

1 ≡ x̃k and
Xk

2 ≡ 1 − x̃k, where x̃k is the marginal consumer type on browser k.26 It is easy to verify that

x̃k = ∆k + 2ηX1 + t− η − h(α1 − α2)
2t , (21)

where ∆1 ≡ V1 − V2 + σ1 and ∆2 ≡ V1 − V2 − σ2. This leads to the following expressions for
aggregate demand:

X1 = 1
2 + λ1∆1 + λ2∆2 − h(α1 − α2)

2(t− η) , X2 = 1
2 − λ1∆1 + λ2∆2 − h(α1 − α2)

2(t− η) . (22)

These are very similar to the consumer demand functions from the baseline game. The only
difference is that ∆ has been replaced by the convex combination λ1∆1 +λ2∆2. As a result, the
equilibrium results from the baseline game are easily extended to this modified game, including
the comparative statics identified in Proposition 2. In particular, an increase in σ1 (which
increases λ1∆1 +λ2∆2) leads z̃∗

1 , p∗
1, α∗

1, and X∗
1 to increase, whereas it has the opposite effects

on z̃∗
2 , p∗

2, α∗
2, and X∗

2 . By contrast, if σ2 increases, all of these effects are reversed. The
proposition below clarifies how browser-level market shares are affected by defaults.

Proposition 8. If η ≤ 2
3t, then ∂Xj∗

i

∂σi
< 0 < ∂X∗

i

∂σi
<
∂X i∗

i

∂σi
for each i and j ̸= i.27

Here Xj∗
i denotes the equilibrium value of Xj

i . Thus increasing σi leads i’s market share
on browser i (X i∗

i ) to increase by more than its overall market share (X∗
i ). By contrast, i’s

market share on browser j (Xj∗
i ) decreases, although the latter effect requires that η is not

too large. Finally, note that the inequality in Proposition 8 implies ∂Xj∗
i

∂σj <
∂X∗

i

∂σj < 0 < ∂Xi∗
i

∂σj .
In what follows, we restrict focus to pairs (σ1, σ2) such that: (a) each platform is active on
both browsers in equilibrium (X i∗

i , X
j∗
i > 0 for each i) and (b) platform 1 remains the overall

market leader (X∗
1 > X∗

2 ), although it does not necessarily have a larger market share on both
browsers (that is, we could have X2∗

1 < X2∗
2 ).

26That is, x̃k is the location that solves uk
1(x̃k) = uk

2(x̃k).
27If η > 2

3 t, then ∂Xj∗
i

∂σi could become positive.
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Aggregate consumer welfare is now given by Wc ≡ λ1W1
c + λ2W2

c , where

Wk
c ≡

∫ Xk
1

0
uk

1(x)dx+
∫ 1

Xk
1

uk
2(x)dx. (23)

The overall impact of platform i’s default contract can be broken up into two parts: a direct
effect on browser i (whose users are directly impacted by the default) and a spillover effect
on browser j ̸= i. Writing welfare as a function of (σ1, σ2), the direct effect of platform 1’s
deal is W1

c (σ1, σ2) − W1
c (0, σ2), while it is W2

c (σ1, σ2) − W2
c (σ1, 0) for platform 2’s agreement.

Similarly, the spillover effect generated by platform 1’s agreement is W2
c (σ1, σ2) − W2

c (0, σ2),
while the spillover generated by platform 2’s agreement is W1

c (σ1, σ2) − W1
c (σ1, 0).

Proposition 9. Suppose that η ≤ 2
3t.

(i) For each i, the direct effect of i’s default contract on browser i is always negative.

(ii) Platform 2’s default contract always generates a positive spillover on browser 1.

(iii) Platform 1’s default contract generates a negative spillover on browser 2 whenever σ1 +σ2

is sufficiently small. If σ1 + σ2 is large, the spillover can be positive.

To understand these results, it is helpful to consider how a given default contract affects the
four different groups of consumers (one for each browser-search platform combination). Table
1 summarizes how the dominant platform’s contract affects the utility of each group.28 The
table also specifies the masses of the different groups. Table 2 provides the same information
about the laggard’s default.

Search Platform 1 Search Platform 2

Browser 1 effect: ∂u1
1

∂σ1 < 0

mass: λ1X1∗
1

effect: ∂u1
2

∂σ1 < 0

mass: λ1X1∗
2

Browser 2 effect: ∂u2
1

∂σ1 < 0

mass: λ2X2∗
1

effect: ∂u2
2

∂σ1 > 0

mass: λ2X2∗
2

Table 1: Effects of platform 1’s default contract on different consumer groups

28All the details needed to fill out these tables are given in the proof of Proposition 9.
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Search Platform 1 Search Platform 2

Browser 1 effect: ∂u1
1

∂σ2 > 0

mass: λ1X1∗
1

effect: ∂u1
2

∂σ2 < 0

mass: λ1X1∗
2

Browser 2 effect: ∂u2
1

∂σ2 < 0

mass: λ2X2∗
1

effect: ∂u2
2

∂σ2 < 0

mass: λ2X2∗
2

Table 2: Effects of platform 2’s default contract on different consumer groups

By inspection of both tables, it is clear that platform i’s default agreement harms all consumers
on browser i, regardless of what search platform they use. This follows from the same arguments
underlying Proposition 4 in the baseline game. As for spillover effects, notice that platform
i’s contract always benefits consumers who use platform j on browser j (j ̸= i). This positive
spillover is key to most of the results in this section.

To make things more concrete, suppose that Google (platform 1) acquires default status on
Safari (browser 1), while Bing (platform 2) is the default on Firefox (browser 2). Consider
Bing’s deal first. It creates switching costs on Firefox, not on Safari. But it still affects Safari
users indirectly in two ways. First, the contract leads Google to act as if its quality V1 has fallen,
inducing it to behave more competitively (α∗

1 falls). Google users on Safari do not experience
that quality reduction (they do not incur the switching cost), but they still benefit from the
reduced ad intensity level. Google users also experience a reduction in network benefits (ηX∗

1
falls). But so long as η is not too large, the latter effect is outweighed by the former, leaving
Google users on Safari better off overall. Symmetric arguments imply that Bing users on Safari
are left worse off.29

The masses of the four different consumer groups are also relevant. Continuing to focus on
Bing’s contract, consider the masses in the top row of the tables. Proposition 8 implies that
∂X1∗

1 /∂σ
i > 0 for both i = 1, 2. This ensures that X1∗

1 > X∗
1 > 1

2 , implying that λ1X1∗
1 is

much larger than λ1X1∗
2 . In other words, Bing’s contract benefits far more Safari users than it

harms. This explains why the laggard’s contract always generates net-positive spillovers.

However, turning to Google’s contract (Table 1), the operative masses (bottom row) are much
less conducive to a welfare improvement. If σ1 and σ2 are small, then each platform’s browser-
level shares are close to its aggregate share (|Xj∗

i − X∗
i | is small for all i and j). In that case,

λ2X2∗
1 must be larger than λ2X2∗

2 , implying that Google’s contract harms more Firefox users
than it benefits. This explains why the dominant platform’s spillover can be positive only if σ1

and/or σ2 are sufficiently large.

The fact that spillover effects can be positive raises the question of whether a default contract
could have a positive effect on aggregate consumer welfare. The final result of this section
addresses that question.

29These consumers experience a negative competition effect (hα∗
2 increases) and a positive network benefit

(ηX∗
2 increases). The former outweighs the latter when η ≤ 2

3 t, resulting in net reduction in utility.

19



Proposition 10. Suppose that η ≤ 2
3t.

(i) Platform 1’s contract always reduces aggregate consumer welfare.

(ii) If λ2 is sufficiently small, platform 2’s contract may increase aggregate consumer welfare.
This becomes more likely when σ1 is larger, when η is smaller, or when µ is more concave.

Thus, even if network effects are not large, it is possible for a default contract to benefit
consumers overall. But there are two important caveats. First, only the laggard’s contract can
potentially raise consumer welfare—the dominant platform’s contract always harms consumers
overall. Second, the laggard’s contract can only raise welfare if it is sufficiently “narrow” in the
sense that it applies to a browser with a relatively small market share. This is captured by λ2

being small.

Intuitively, when λ2 is small, the positive spillover generated by the laggard’s agreement affects
a large majority of the consumer base. For example, in the Google-Bing example, the consumer
group that benefits from Bing’s deal is composed of Google users on Safari. This is by far the
biggest consumer group, since Google is much more popular than Bing and Safari is much more
popular than Firefox. As a result, the benefits imposed on this group may outweigh the harms
imposed on the other three. By contrast, when λ2 is large, we already know from the baseline
game (which is equivalent to λ2 = 1) that the laggard’s contract will reduce welfare.

The proof gives an numerical example where the laggard’s agreement raises welfare. When
demand is linear (as in Example 1), this can happen only if σ1 is positive. A positive value
of σ1 makes it easier for the laggard’s deal to raise welfare, because it increases the mass of
consumers who benefit from the laggard’s contract. However, if µ is concave, the laggard’s
deal could raise aggregate consumer welfare even if σ1 = 0. Finally, a smaller value of η makes
the competition-intensifying effect of the laggard’s deal (which is responsible for the positive
spillover) more important relative to its impact on network effects (which detracts from the
positive spillover). This too makes it easier for the laggards deal to raise consumer welfare.

4 Dynamic Effects: Laggard Entry and Investment

The foregoing analysis focuses on static competitive effects. But defaults may also have dynamic
effects on entry and investment, which are important to determine how defaults affect welfare
over the long run. To that end, this section introduces a simple model to study how defaults
affect entry and investment by potential entrants. A later section then considers the plausibility
of some additional possible dynamic effects that have been widely discussed in connection with
the Google case (Section 5.4).

The laggard is now replaced by a potential entrant who can endogenously invest in a risky
R&D project aimed at creating a new search platform. If successful, it enters the market and
assumes the role of platform 2. This is captured by the following three-stage game.
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Stage 1: The potential entrant’s type, denoted v, is drawn from a distribution G
on [v, v], where 0 ≤ v < v.
Stage 2: The potential entrant chooses an R&D investment y ≥ 0. The R&D
project is successful with probability ρ(y).
Stage 3: If the potential entrant was successful in stage 2, it enters and assumes the
role of platform 2 with quality level V2 = v. The two platforms compete according
to the baseline game. If the entrant failed at stage 2, platform 1 is a monopolist.

The entrant’s type, v, specifies how promising it is as a potential competitor. If its type is too
low, then it could not earn a positive profit in competition, in which case there is no benefit to
investing. As in the baseline game, we allow for the possibility that either platform (or neither)
is the default in stage 3 competition. A few assumptions will ensure the game is well behaved.
First, we assume that both firms will be active in equilibrium when V2 = v, regardless of which
firm (if any) is the default. Second, the probability function ρ : [0,∞) → [0, 1) is assumed to
be twice continuously differentiable with ρ(0) = 0, ρ′(y) > 0, and ρ′′(y) < 0. It also satisfies
the Inada condition limy→0 ρ

′(y) = ∞.30 Finally, we impose η ≤ 2
3t, which ensures that entry

is better for consumers than monopoly.

Proposition 11. The entry game has a unique subgame perfect Nash equilibrium, which is
characterized by a function y∗(v) and a threshold ṽ ∈ [v, v). A potential entrant’s investment
is positive (y∗(v) > 0) if and only if v > ṽ. Additionally, ∂y∗(v)/∂v > 0 whenever v > ṽ. The
equilibrium probability of entry is (1 − G(ṽ))E[ρ(y∗(v))|v > ṽ]. Defaults affect the equilibrium
in the following ways:

(i) When platform 1 is the default, ṽ strictly increases and y∗(v) strictly falls for all types
v > ṽ. The probability of entry strictly decreases, as does expected consumer welfare.

(ii) When platform 2 is the default, ṽ strictly decreases and y∗(v) strictly increases for all types
v > ṽ. The probability of entry strictly increases. Expected consumer welfare increases if
the increase in the probability of entry is sufficiently large.

A default by the dominant platform generates two harmful dynamic effects. First, it leads to
some entry deterrence. The increase in ṽ means that fewer potential entrants will actually
attempt to enter. Second, although sufficiently strong potential entrants will still attempt to
enter, they now invest less. The problem is that investment is not as worthwhile for a potential
entrant, because its expected profits (conditional on entry) have been distorted downward by
the dominant platform’s default.

By contrast, all of these results reverse direction when platform 2 is the default, resulting in
larger investments by a larger set of types, and thus a higher likelihood of entry. Hence, allowing
defaults for small search engines helps to stimulate entry and investment.

To understand the consumer welfare results, recall that in the baseline game with η ≤ 2
3t, a

default agreement (by either platform) necessarily reduces static consumer welfare (which takes
30This assumption can be relaxed. When the limit is finite, this creates an additional reason why some

potential entrants might optimally invest zero.
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entry as given). In the entry game, this reduction in post-entry static welfare is accompanied by
dynamic effects that shape the probability of entry. When the dominant platform is the default,
entry and investment are suppressed, and so both the static and dynamic effects of the default
are harmful to consumers. By contrast, when the entrant is the default, the dynamic effects
are welfare-enhancing (entry and investment increase). These dynamic effects will dominate,
leading to a net increase in expected consumer welfare, when the increase in the probability of
entry is sufficiently large.

5 Extensions

5.1 Diminishing Returns to User Data

In the baseline model, network effects contribute an amount Xiη to the perceived quality of
platform i. This assumes that network benefits increase linearly with scale. But, in practice,
the algorithmic learning benefits generated from user data are likely subject to diminishing
returns. As Tucker (2019) notes, “most studies suggest there are, at best, concave returns to
data—that is, initially data can indeed provide performance advantages, but these performance
advantages quickly decline as the firm obtains more data.”

To explore this possibility, we now extend the baseline model as follows. There is a threshold
level of scale X̂ ∈ (0, 1) at which marginal network benefits fall from η to η, where η ≥ η. In
other words, the network benefits now take the form

Network benefits =

Xiη, if Xi ≤ X̂

X̂η + (Xi − X̂)η, if Xi > X̂.

This is a piecewise linear function with a kink point at Xi = X̂. If X̂ is smaller than X∗
2

or larger than X∗
1 , then nothing interesting happens in this modified game.31 The interesting

situation is where X∗
2 < X̂ < X∗

1 . In this case, the marginal benefits of user data are larger for
the laggard than for the dominant platform.

Although the main result given in this section holds for any X̂ ∈ (X∗
1 , X

∗
2 ), it will be convenient

to set X̂ = 1
2 . It will also be convenient to define η and η as follows:

η ≡ (1 + r)η, η ≡ (1 − r)η. (24)

Here η = (η + η)/2 is the average of η and η, which we hold fixed. The parameter r ∈ [0, 1]
governs the relative magnitudes of η and η, and thus captures the degree to which network
benefits diminish with scale. Notice that r = 0 just results in the baseline model. This
parameterization is helpful, because equilibrium strategies and demand levels depend only on

31If X∗
1 < X̂, then the game is identical to the baseline model with η = η. If X̂ < X∗

2 then the game is nearly
identical to the baseline with parameter value η = η (the only difference is that each platform’s overall quality
now includes an additional contribution of X̂η).
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the average parameter value, η, not on the individual values of η and η.

Assuming platform 1 obtains default status, utilities for platform 1 and 2 are, respectively,

u1(x) = V1 + 1
2η + (X1 − 1

2)η − hα1 − tx

= V1 + rη +X1η − hα1 − tx (25)

u2(x) = V2 +X2η − hα2 − t(1 − x) − σ. (26)

Following the approach from Section 2.2, consumer-side demand for platform 1 is

X1 = ∆ + t− (η − rη) − h(α1 − α2)
2t− η − η

= 1
2 + ∆ − h(α1 − α2)

2(t− η) (27)

This is precisely the same demand function from the baseline game. It follows that the first
order conditions and equilibrium strategies will be the same as in the baseline game. But
utilities, and thus consumer welfare effects, are now different. Our main result is that, when
there are diminishing returns to data, default agreements are more detrimental to consumers.

Proposition 12. Assume that platform 1 is the default and let Wc(r) denote equilibrium con-
sumer welfare as a function of r. If r′ > r, then

∂Wc(r′)
∂σ

<
∂Wc(r)
∂σ

. (28)

This result makes intuitive sense. When there are diminishing returns to data, a small amount
of user data matters much more to the laggard than to the dominant platform. Thus, when
a default agreement leads some consumers to switch from platform 2 to platform 1, this may
generate only a small or negligible increase in the dominant platform’s quality, but it may
substantially diminish the laggard’s quality. This asymmetry magnifies the adverse welfare
effects of default agreements. These results also make it less likely that consumers might prefer
monopoly to competition, as that possibility requires that increases in market share continue
to generate large quality improvements even when the platform is already very large.

5.2 Asymmetric Demand Effects and Captive Consumers

Suppose that initially there are no defaults, because consumers are presented with a choice
screen. Relative to this benchmark, let Si denote the measure of consumers who would switch
platforms (from j to i) if platform i became the default.32 Do defaults by the two platforms
have symmetric demand effects in the sense that S1 = S2? As explained below, the answer is
likely no, and a failure to account for this asymmetry can lead to mistaken inferences about
the potential anticompetitive effects of defaults.

32Treating X∗
i as a function of ∆, S1 ≡ X∗

1 (V1 −V2 +σ)−X∗
1 (V1 −V2) and S2 ≡ X∗

2 (V1 −V2 −σ)−X∗
2 (V1 −V2).
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In the baseline model, the relationship between S1 and S2 is ambiguous in general. But em-
pirical evidence indicates that the demand response is larger when the default platform faces
a relatively strong competitor. That is, Si is an increasing function of Vj − Vi. This implies
that the laggard’s defaults generate larger demand effects, i.e. S2 > S1. This is supported by
empirical evidence on the effects of choice screen mandates (which eliminated Google’s defaults)
across different foreign jurisdictions in which Google faces varying degrees of competition.33

In the baseline model, the relative magnitudes of S1 and S2 depends on details about the
curvature of demand.

Proposition 13. In the baseline model:

(i) S1 = S2 if demand is linear (i.e. if µ′(·) is constant).

(ii) S2 > S1 if µ′(·) is strictly log-concave.

This can be understood as follows. Recall from Section 2.2 that a default shifts the consumer
demand function Xi = Xi(α1, α2) vertically upward for the default platform, while the other
platform’s demand shifts downward. Because aggregate consumer demand is constant (X1 +
X2 = 1), these countervailing shifts must be equal in magnitude. However, in principle, this
shift magnitude could depend on which platform acquires default status—for example, it could
be larger when the laggard is the default. But in the baseline model this doesn’t happen—the
shift magnitude is always σ/2(t− η), regardless of which platform becomes the default. When
the model is linear, this symmetry in the shift magnitudes ensures that equilibrium demand
responses are likewise symmetric, i.e. S1 = S2. As a result, the empirically observed asymmetry
(S2 > S1) can arise only if demand functions are curved in the right way.

However, a simple and intuitive modification of the game makes the empirically observed asym-
metry much more robust, so that it no longer requires strong assumptions about demand curva-
ture. This is achieved by supposing that some consumers are “captives” in the sense that they
never switch away from the default platform (regardless of who it is). To this end, we now add
a small mass w > 0 of captive consumers to the model.34 For these consumers, switching costs
are always prohibitively high. As in the baseline model, there is also a unit mass of “normal”
consumers who face a smaller switching cost σ. Because two types differ only in the size of
their switching costs, a consumer’s type doesn’t matter when a choice screen is implemented,
since a choice screen makes switching costs irrelevant.35

In this extension, the magnitudes of the demand shifts are no longer symmetric.36 Specifically,
33For example, Decarolis et al. (2024) find that a choice screen generated only a tiny drop (∼1%) in Google’s

market share in Europe, where its strongest rival (Bing) is relatively weak. (Bing’s market share prior to the
choice screen was less than 1%.) But in Russia, Google faces a much stronger rival—Yandex, which had a 30%
market share even before the choice screen was introduced. When the Russian choice screen was implemented,
Google’s share fell by ∼11%.

34We assume that captives are uniformly distributed along the Hotelling line, and that w is small enough to
ensure both platforms are active in equilibrium.

35Under a choice screen, a consumer never has to switch platforms in order to pick her preferred option.
36See the proof of Proposition 14 for details.
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a default by the laggard generates larger shifts than a default by the dominant platform.37 As
a result, the desired asymmetry in equilibrium demand responses (S2 > S1) now arises even
when there are no strong conditions on the curvature of demand. We can verify this by showing
that the asymmetry occurs even when demand is linear.

Proposition 14. In the model with captive consumers, S2 > S1 when demand is linear.

Failing to account for this asymmetry of demand effects can lead to erroneous inferences about
the competitive significance of defaults. For example, some commentators have argued that the
tiny impact of the European choice screen on Google’s market share in the E.U. implies that
default agreements have only trivial effects on competition. But, because demand effects are
asymmetric, this small effect simply reflects the weakness of Google’s European competition.

The asymmetry also leads to a subtle relationship between the static and dynamic harms created
by a dominant platform’s defaults: if the deals have already generated substantial dynamic
harm (by suppressing rival investment), culminating in a large quality gap, the defaults will
then appear to have only minor effects on static competition at the margin (in the sense that
S1 is small). Thus, evidence that a defendant’s defaults have only a small effect on current
market shares may reflect that the deals have already caused significant adverse effects.

5.3 Data Sharing Remedy

[TBD]

5.4 Other Possible Dynamic Effects

In Section 4, we considered how defaults affect laggard entry and investment. But the Google
case has provoked much speculation about other possible dynamic effects of Google’s defaults.
For example, perhaps Google’s defaults could help to promote competition in the browser
market? Or perhaps they could cause additional long-run harm to the search market by dis-
couraging a browser developer (e.g. Apple) from creating its own search engine? This section
briefly considers what the model implies about the plausibility of these possibilities.

Proposition 15. In the baseline game:

(i) If one platform is banned from paying for default status, this reduces the other platform’s
willingness to pay for default status.

(ii) Total platform profits (Π∗
1 + Π∗

2) are strictly higher when platform 1 is a monopolist than
when both platforms are active.

37The reason is that, under a choice screen, the laggard would attract only a small portion of captives (since
the dominant platform is more popular), so default status greatly increases the number of captives who use it.
But the same is not true for a default by the dominant platform, since it would have attracted most captives
even under a choice screen.
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These results shed light on some of the dynamic questions mentioned above.

Maintaining competition in the browser market. Some search access points may rely on large
default payments as a primary source of revenue. For example, Mozilla (creator of Firefox)
reportedly receives the majority of its revenues from Google. Therefore, if the dominant plat-
form were banned from paying for default status, this could potentially make it hard for some
browsers or other access points to sustain profitable operations. Two results potentially support
this. First, Proposition 7 implies the dominant platform is willing to pay more than the lag-
gard. Second, from part (i) of Proposition 15, eliminating the dominant platform as a potential
bidder for default status would lead other search platforms to bid less.

Discouraging browsers from integrating into search. It has been widely theorized that part of
the reason Google pays Apple so much for default status on Safari is that Apple was considering
launching its own search engine. Google could potentially discourage this by offering to pay
Apple a sufficiently large amount to maintain its default position on Safari. Apple would
presumably have much less incentive to launch its own search engine if Google would remain
the default option on Safari. For this story to be plausible, it would have to be the case that
Apple’s integration into the search market would reduce Google’s profits by more than it raises
Apple’s. Part (ii) suggests that this is indeed the case.38 However, unless Apple agreed to
restrict its development of a competing search engine, it is not clear that this possibility raises
antitrust concerns. I return to this question in Section 6.

Search platform integration into the browser market. Google created one of the biggest search
access points—the Chrome browser. Google’s decision to develop Chrome may have hinged on
its ability to use the browser to bolster its search business by making Google Search the default
browser on Chrome. In other words, if Google were prohibited from obtaining any defaults,
this would have diminished its incentive to create Chrome.

These arguments suggest that some of Google’s defaults could have desirable dynamic effects.
However, as discussed further in Section 6, it is not clear that any of these possible dynamic
benefits would require Google to be the default on almost all major search access points. In
other words, these arguments may caution against a categorical ban on defaults, but they do
not imply that there should be no antitrust limits at all.39

6 Discussion

United States v. Google is perhaps the most high-stakes monopolization case since Microsoft.
But it centers on a relatively novel type of agreement that has not yet been studied extensively
in economics. This paper attempts to fill that gap. The results suggest that, under plausible

38Even if platforms are high differentiated (large t), competition always reduces profits in this model. This is
because it is consumers who view the platforms as horizontally differentiated, but it is advertisers who account
for all the platforms’ revenue. Any competition on the consumer side, even if it is soft, will induce the platforms
to reduce their ad intensity levels (αi), reducing the revenues that can be extracted from advertising.

39By analogy, antitrust does not categorically prohibit firms from engaging in exclusive dealing. Antitrust
liability kicks in only when a dominant firm’s exclusive dealing becomes sufficiently broad in scope.
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conditions, default agreements are likely to be anticompetitive, at least if they are sufficiently
broad (in terms of the share of users directly affected by them). Defaults have a biasing effect
on consumer choice, distorting competition in favor of the default platform. Network effects
magnify the competitive effects of this distortion. As a result, defaults can have a significant
effect on competition even if switching costs are not very large.

If network effects are sufficiently strong, consumers might prefer monopoly over competition.
A dominant platform’s default agreements could then benefit consumers precisely because they
reduce competition. If so, Google Search might be something like a natural monopoly. However,
as noted in Section 5.1, most research suggests there are diminishing returns to user data, and
this makes it less likely that consumers might prefer monopoly over competition.

Assuming consumers are indeed better off under competition, a broad set of default agreements
involving a dominant platform is likely to harm consumers unless it happens to prevent a
counterfactual arrangement that would have been even worse. To this end, if the counterfactual
involves a laggard search engine acquiring default status on the same broad set of search access
points, this would likely be worse for consumers. If so, the dominant platform’s agreements
would technically leave consumers better off, but only in the sense that they prevent the
formation of even more harmful agreements.40

While this paper identifies many relevant competitive effects, it cannot shed much light on the
magnitudes of those effects. Thus, it cannot reveal the extent to which default agreements
might have contributed to Google’s dominant market share. That depends on a number of
empirical questions, such as precisely how “sticky” defaults are.

Vertical restraints are treated much less harshly than horizontal ones because they are often
benign or procompetitive. Consistent with this, the results indicate that default agreements
(particularly by laggards) could be beneficial in some situations. A sufficiently narrow default
agreement by a laggard can raise consumer welfare by forcing the dominant platform to behave
more competitively. And in some cases default agreements may help to stimulate entry or
investment. This fits neatly with other research suggesting that vertical restraints may play
an important entry-facilitating role in network industries. For example, Lee (2013) finds that
exclusive rights over video games helped to facilitate successful entry by laggard video game
consoles.41 By contrast, default agreements by the dominant platform make it harder for
laggards to enter. However, as noted in Section 4, some of Google’s defaults could have helped
to promote entry in other markets, either by Google or by independent firms.

These findings may caution against a categorical ban on default agreements. However, this does
not imply that there should be no antitrust limits at all. The plausibility of a procompetitive
justification grows weaker as a defendant’s default contracts become broader in scope. Indeed,
none of the potential dynamic justifications for defaults would seem to require a single firm to

40However, if the counterfactual involves a much narrower set of default agreements by the laggard, then we
would have much less reason to think that the dominant platform’s contracts left consumers better off. See
Section 3.

41The comparison to video game exclusives is apt, because much like giving default status to a laggard search
engine, making a popular video game exclusive to a laggard game console could reduce static welfare by nudging
consumers toward a less popular product. But because this can facilitate entry, it may actually raise welfare.
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obtain default status on almost all major search access points. Thus, one simple policy option
would be to treat default agreements in roughly the same way we treat exclusive dealing: lawful
in moderation, but not in excess.

The rest of this section discusses additional policy issues and highlights important limitations
on what this paper implies about facially similar practices in other settings.

“Nudges” and antitrust. This article does not suggest that all “nudges” are likely to raise
antitrust concerns. Such biasing effects are ubiquitous and rarely raise antitrust concerns. In
most cases, the biasing effect is simply unavoidable. For example, competition for groceries
is biased in favor of brands that get the most prominent shelf space. This bias is not a good
candidate for antitrust intervention, in part because there is nothing we can do to eliminate
it—someone has to get the best shelf space. At best, antitrust intervention could change the
direction of the bias.42 Similar arguments apply to some modern concerns about platform “self-
preferencing.”43 The bias created by search engine defaults is different. It is not unavoidable—
it could be eliminated through a choice screen or similar arrangement. At minimum, the
magnitude of the bias could be reduced by eliminating contractual restrictions that inflate
switching costs.44

Default-like arrangements in other settings. Similarly, this article does not suggest that de-
faults or similar arrangements in other contexts are likely to be anticompetitive. Default-like
restrictions on consumer choice often help to reduce manufacturing costs, and some of those
savings will be passed through to consumers.45 However, this argument does not apply in the
present context. Search engines and choice screens are purely digital, so we have no reason to
think that search defaults reduce the cost of producing mobile devices.

Subsidization of mobile devices? Even if search engine defaults do not lower production costs,
they could still reduce device prices if Google’s large payments to device makers act like a
subsidy. Google has cited this possibility in defense of its agreements. However, both empirical
evidence and theoretical considerations cast doubt on this. Decarolis et al. (2024) studied the
effects of various choice screens implemented overseas, all of which necessarily eliminate defaults
on all affected devices. They found that this change had no effect on device sales, suggesting
there were no significant price effects. What’s more, the way payments are structured in default
agreements is not conducive to significant price effects, because most device sales will not affect
the payments received by the device maker. In Appendix B.3. I discuss these and other
difficulties facing the subsidization argument.

Remedy considerations. If a court finds antitrust liability, what is the right remedy? The
simplest remedy would be an injunction that terminates some or all of the Google’s default
contracts. That would leave device makers and browsers free to enter into default agreements

42But it is not clear that the antitrust system is well-suited to this, as it would require authorities to ask
subjective questions about which brand “deserves” the best shelf space.

43Many of these allegations involve a platform listing its own product first within search rankings. Here too
the bias is unavoidable, as any ranking of items will inevitably bias consumers toward the higher-ranked items.

44See footnote 2.
45For example, Ford does not let a consumer choose what brand of tires her car comes with. She is free to

replace them with her preferred brand, but that will be costly. While this creates a bias in favor of the default
tire brand, it is cost-efficient for Ford to install the same tires on every car.
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with smaller search engines like Bing, or to offer consumers a choice screen. Another possibility,
which was discussed at trial, involves changing Google’s agreements so that its payments are
not contingent on default status. Google could still pay device makers a cut of the search
revenue they help to generate, but the payments could not be contingent on making Google
the default.

Even if the court find’s Google liable, its judgment will only bind Google. Thus, broad-sweeping
interventions, such as a rule requiring all device makers to offer a choice screen, would require
new regulation. Such a mandate would eliminate the anticopmetitive effects of defaults, but it
is not necessarily the best way to do so. As noted above, allowing some limited default contracts
(particularly by laggards) could be beneficial. Another proposed regulatory intervention would
involve ordering Google to share its data with smaller rivals. However, Martens (2024) finds
that this may not be in consumers’ interest.

Less restrictive alternatives. Even if a dominant platform’s default agreement leaves consumers
better off by preventing a laggard from obtaining default status, the deal could still be anticom-
petitive in the sense that it restrains competition by more than necessary. A procompetitive
benefit does not excuse a restraint if the same benefit could have been achieved by employing
a “less restrictive alternative”—a less anticompetitive (but still feasible) way of achieving the
same procompetitive benefit.46 This could potentially apply in two ways. First, if the domi-
nant platform’s default agreement includes additional provisions designed to increase switching
costs, those provisions would likely be anticompetitive even if the underlying default is deemed
to be acceptable. Second, in principle the dominant platform could prevent the laggard from
acquiring default status without having to acquire such status for itself. For example, Google
and Apple could form a parity agreement in which Apple promises not treat rival search engines
more favorably than Google Search. This would prevent rivals from acquiring default status,
but Apple would still be allowed to implement a choice screen or other neutral system.47

Large payments as an entry deterrent? As noted in Section 4, if a device maker like Apple
vertically integrated into the search market, this would reduce total platform profits. This
implies that Google would be willing to pay a very large amount—more than the profits Apple
would earn by joining the search market—to prevent Apple from entering. If Apple agreed to
limit its development of a competing search engine, this would be a horizontal restraint, and
could very well raise serious antitrust concerns. However, if Apple merely agreed to make Google
the default search engine, without more, then antitrust scrutiny is arguably inappropriate even
if the deal happens to extinguish Apple’s interest in vertically integrating. Normally, when a
threat of competitive entry induces an incumbent to give more favorable terms to its trading
partners, we think of this as a good thing, even if it means that no entry ends up occurring. It
is not clear why we should stray from that view in the present case.

46See, e.g., Hemphill (2016).
47It is easy to extend Proposition 7 to show that platform 1 would be willing to pay more for this result than

platform 2 would be willing to pay for default status. This suggests that this alternative deal would be both
feasible and profitable for platform 1.

29



References

Simon P Anderson and Bruno Jullien. The advertising-financed business model in two-sided
media markets. In Handbook of media economics, volume 1, pages 41–90. Elsevier, 2015.

Mark Armstrong. Competition in two-sided markets. The RAND journal of economics, 37(3):
668–691, 2006.

Mark Armstrong and Julian Wright. Two-sided markets, competitive bottlenecks and exclusive
contracts. Economic Theory, 32:353–380, 2007.

Susan Athey and Glenn Ellison. Position auctions with consumer search. The Quarterly Journal
of Economics, 126(3):1213–1270, 2011.

Germán Bet, Roger D Blair, and Javier D Donna. The economic rationale of united states v.
google. The Antitrust Bulletin, 67(1):23–39, 2022.

Yongmin Chen and Marius Schwartz. Assigning default position for digital goods: Competition,
regulation, and welfare. Technical report, 2024.

Jay Pil Choi, Doh-Shin Jeon, and Michael Whinston. Tying in markets with network effects.
working paper, 2023.

Alexandre De Corniere. Search advertising. American Economic Journal: Microeconomics, 8
(3):156–188, 2016.

Francesco Decarolis, Muxin Li, and Filippo Paternollo. Competition and Defaults in Online
Search. Working paper, 2024.

Michal S Gal and Daniel L Rubinfeld. The hidden costs of free goods: Implications for antitrust
enforcement. Antitrust Law Journal, 80(3):521–562, 2016.

Daniel Garcia. Search engine competition. 2023.

Richard J Gilbert and David MG Newbery. Preemptive patenting and the persistence of
monopoly. The American Economic Review, pages 514–526, 1982.

C Scott Hemphill. Less restrictive alternatives in antitrust law. Colum. L. Rev., 116:927, 2016.

Justin P Johnson. The agency model and mfn clauses. The Review of Economic Studies, 84
(3):1151–1185, 2017.

Robin S Lee. Vertical integration and exclusivity in platform and two-sided markets. American
Economic Review, 103(7):2960–3000, 2013.

Bertin Martens. The impact of search engine data sharing on competition and consumer welfare.
European Competition Journal, pages 1–18, 2024.

John M Newman. Antitrust in zero-price markets: Foundations. University of Pennsylvania
law review, pages 149–206, 2015.

30



Volker Nocke, Martin Peitz, and Konrad Stahl. Platform ownership. Journal of the European
Economic Association, 5(6):1130–1160, 2007.

Michael Ostrovsky. Choice screen auctions. American Economic Review, 113(9):2486–2505,
2023.

Martin Peitz and Markus Reisinger. The economics of internet media. In Handbook of media
economics, volume 1, pages 445–530. Elsevier, 2015.

Michael Potuck. Report reveals android users switching to iphone at 5-year high. 9to5Mac.com,
May 2023.

Andrea Prat and Tommaso Valletti. Attention oligopoly. American Economic Journal: Mi-
croeconomics, 14(3):530–557, 2022.

Catherine Tucker. Online advertising and antitrust: Network effects, switching costs, and data
as an essential facility. CPI Antitrust Chronicle, April, pages 30–35, 2019.

E Glen Weyl. A price theory of multi-sided platforms. American Economic Review, 100(4):
1642–1672, 2010.

E Glen Weyl and Alexander White. Let the right’one’win: Policy lessons from the new eco-
nomics of platforms. Competition Policy International, 10(2):29–51, 2014.

Appendix A: Proofs

Proof of Proposition 1

Proof. Platform i’s profits are Πi = mF (z̃i)Xipi. Viewing this as a function of (z̃i, pi), it
is straightforward to verify (using assumptions 1 and 2) that the Hessian of Πi is negative
semidefinite and that Πi is strictly concave in each argument. We will confirm shortly that
the platforms’ optimal choices of z̃i and pi are always interior (i.e. they satisfy F (z̃i) < 1 and
pi > 0) in equilibria where both platforms are active. These facts ensure that equilibrium
behavior is pinned down by first order conditions (FOCs). The FOC for z̃i is

f(z̃i)Xi = h

2(t− η)F (z̃i) ⇐⇒ Xi = h

2(t− η)µ(z̃i), (29)

which is equation (12) from Proposition 1. The FOC for pi is

Xi = h

2(t− η)pi. (30)

Combining these yields pi = µ(z̃i), which is equation from (12) the Proposition. Thus, any
equilibrium must be characterized by (11) and (12). But we must still show existence and
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uniqueness. Plugging the definition of Xi (from (9)) into (30) and solving for prices, we get

pbr
1 = t− η + ∆ − h(z̃1 − z̃2) + hp2

2h , pbr
2 = t− η − ∆ + h(z̃1 − z̃2) + hp1

2h . (31)

We can think these as the platforms’ best response functions for prices, conditional on the
values of z̃1 and z̃2. These functions intersect at the following prices:

p†
1 = 3(t− η) + ∆ − h(z̃1 − z̃2)

3h , p†
2 = 3(t− η) − ∆ + h(z̃1 − z̃2)

3h . (32)

Suppose that the equilibrium choices of z̃i satisfy |z̃1 − z̃2| → 0 as ∆ → 0 (we will confirm this
later). Then p†

1 and p†
2 are both positive for sufficiently small ∆, and p†

1 = p†
2 = t−η

h
in the

limit ∆ → 0. Using (11), we must have p†
i = µ(z̃i) in equilibrium. Plugging this into (32) and

rearranging, we get the following pair of equations:

µ(z̃1) + z̃1

3 = t− η

h
+ ∆

3h + z̃2

3 , µ(z̃2) + z̃2

3 = t− η

h
− ∆

3h + z̃1

3 . (33)

These equations implicitly define best response functions for z̃1 and z̃2. Implicit differentiation
of the first equation w.r.t. z̃2 shows that the slope of platform 1’s best response function is
1/(1 + 3µ′(z̃1)) ∈ (0, 1). A symmetric argument applies to platform 2. Since the slopes of both
reaction functions lie in (0, 1), there exists at most one pair (z̃1, z̃2) satisfying both equations
in (33). When ∆ = 0, both equations are satisfied by setting z̃1 = z̃2 = z̃0, where z̃0 is defined
implicitly by µ(z̃0) = t−η

h
. This is the symmetric equilibrium of the game. This equilibrium

has demand levels X1 = X2 = 1
2 and Z1 = Z2 = mF (z̃0) > 0, so both firms are active. As ∆

increases from zero, best response functions shift continuously. Thus there will still be a unique
equilibrium with both firms active so long as ∆ is not too large.

We can derive the upper bound ∆crit. The FOCs imply that µ(z̃∗
1) +µ(z̃∗

2) = 2(t−η)
h

. As we will
verify in the proof of Proposition 2, z̃∗

1 is strictly increasing in ∆ and z̃∗
2 is strictly decreasing.

(This implies that z̃∗
1 > z̃∗

2 , since they are equal when ∆ = 0.) Thus, both firms are active
so long as z̃∗

2 > z. ∆crit is the value of ∆ at which z̃∗
2 = z, in which case we must have

µ(z̃∗
1) = 2(t− η)/h ⇔ z̃∗

1 = z̃m ≡ µ−1
(
2(t− η)/h

)
. (Assumption 3 ensures this is feasible.) The

corresponding prices are p∗
1 = µ(z̃m) = 2(t − η)/h and p∗

2 = µ(z) = 0. Plugging these strategy
values into (32) we find

∆crit = 3(t− η) + hµ−1
(

2(t− η)
h

)
− hz. (34)
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Proof of Proposition 2

Proof. Part (i). In the proof of Proposition 1, we showed that the equilibrium prices must
satisfy

p∗
1 = 3(t− η) + ∆ − h(z̃∗

1 − z̃∗
2)

3h , p∗
2 = 3(t− η) − ∆ + h(z̃∗

1 − z̃∗
2)

3h . (35)

This implies p∗
1 − p∗

2 = [2∆ − 2h(z̃∗
1 − z̃∗

2)]/3h. Plugging this into the definition of Xi and
simplifying, we find that equilibrium consumer demand levels must satisfy

X∗
1 = 1

2 + ∆ − h(z̃∗
1 − z̃∗

2)
6(t− η) , X∗

2 = 1
2 − ∆ − h(z̃∗

1 − z̃∗
2)

6(t− η) . (36)

Substituting this into (12) for each i = 1, 2, we find

1
2 + ∆ − h(z̃∗

1 − z̃∗
2)

6(t− η) = h

2(t− η)µ(z̃∗
1), 1

2 − ∆ − h(z̃∗
1 − z̃∗

2)
6(t− η) = h

2(t− η)µ(z̃∗
2). (37)

Let µ′
i ≡ µ′(z̃∗

i ), and let ∂∆ be the derivative operator ∂∆ = ∂
∂∆ . Differentiating the equations

in (37) w.r.t. ∆ and rearranging, we find

∂∆z̃
∗
1 = 1 + h∂∆z̃

∗
2

h(1 + 3µ′
1)
, ∂∆z̃

∗
2 = −1 + h∂∆z̃

∗
1

h(1 + 3µ′
2)
. (38)

These equations are linear in ∂∆z̃
∗
1 and ∂∆z̃

∗
2 and they are linearly independent, so there is a

unique solution (∂∆z̃
∗
1 , ∂∆z̃

∗
2). Substituting one equation into the other yields the solution

∂∆z̃
∗
1 = µ′

2
hM

> 0, ∂∆z̃
∗
2 = − µ′

1
hM

< 0, (39)

where M ≡ µ′
1 + µ′

2 + 3µ′
1µ

′
2. By differentiating (11) and (12) w.r.t. ∆, we obtain

∂∆p
∗
1 = µ′

1∂∆z̃
∗
1 = µ′

1µ
′
2

hM
> 0, ∂∆p

∗
2 = µ′

2∂∆z̃
∗
2 = −µ′

1µ
′
2

hM
< 0 (40)

and

∂∆X
∗
1 = h

2(t− η)µ
′
1∂∆z̃

∗
1 = µ′

1µ
′
2

2(t− η)M > 0, ∂∆X
∗
2 = h

2(t− η)µ
′
2∂∆z̃

∗
2 = − µ′

1µ
′
2

2(t− η)M < 0.

(41)
Using the fact that αi = z̃i + pi, we have

∂∆α
∗
1 = µ′

2 + µ′
1µ

′
2

hM
> 0, ∂∆α

∗
2 = −µ′

1 + µ′
1µ

′
2

hM
< 0. (42)

Finally, using the above results, it is easy to verify that

∂∆[X∗
1α

∗
1 +X∗

2α
∗
2] = µ′

1µ
′
2

hM

{
h

2(t− η)

(
α∗

1 − α∗
2 + µ(z̃∗

1)
µ′

1
− µ(z̃∗

2)
µ′

2

)
+X∗

1 −X∗
2

}
> 0
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where the inequality follows from Assumption 2 and the facts that X∗
1 > X∗

2 and α∗
1 > α∗

2.

Part (ii). For z̃∗
i , p∗

i , and α∗
i we can follow the same approach from part (i). Let ∂η be the

derivative operator ∂η = ∂
∂η

. As in the last proof, we differentiate the equations in (37), but
this time w.r.t. η. As before, this leaves us with two independent equations that are linear in
the derivatives we wish to calculate (which are now ∂ηz̃

∗
i for i = 1, 2). Solving this system of

equations gives us
∂ηz̃

∗
1 = −3µ′

2 + 2
hM

< 0, ∂ηz̃
∗
2 = −3µ′

1 + 2
hM

< 0. (43)

Differentiating (11) w.r.t. η, we find

∂ηp
∗
1 = µ′

1∂ηz̃
∗
1 = −3µ′

1µ
′
2 + 2µ′

1
hM

< 0, ∂ηp
∗
2 = µ′

2∂ηz̃
∗
2 = −3µ′

1µ
′
2 + 2µ′

2
hM

< 0. (44)

It follows from these results that ∂ηα
∗
i < 0 for each i = 1, 2. To finish the proof, we need to

show that ∂ηX
∗
1 = −∂ηX

∗
2 > 0. To do this, we show that the ratio X∗

1/X
∗
2 is strictly increasing

in η. To this end, plugging µ(z̃∗
1) + µ(z̃∗

2) = 2(t−η)
h

into (12), we get the following expression for
consumer-side market shares:

X∗
i = µ(z̃∗

i )
µ(z̃∗

i ) + µ(z̃∗
j ) (45)

where j ̸= i. Differentiating this identity for i = 1 and using results from the proof of Proposi-
tion 2, we obtain the following derivative after simplification:

∂ηX
∗
1 = µ′

1µ
′
2

(µ(z̃∗
1) + µ(z̃∗

2))2hM

{
3(µ(z̃∗

1) − µ(z̃∗
1)) + 2

(
µ(z̃∗

1)
µ′

1
− µ(z̃∗

2)
µ′

2

)}
. (46)

Under Assumptions 1 and 2, this is positive, which completes the proof.

Proof of Proposition 3

Proof. Let i be the default platform and let j = 3 − i. As in earlier proofs, let µ′
i ≡ µ′(z̃∗

i ) and
M ≡ µ′

1 + µ′
2 + 3µ′

1µ
′
2. Using results from the proof of Proposition 2, we have

∂u∗
j(x)
∂σ

= −1 + η
∂X∗

j

∂σ
− h

∂α∗
j

∂σ

= −1 −
ηµ′

iµ
′
j

2(t− η)M +
µ′

i + µ′
iµ

′
j

M

= −
{
µ′

j + 2µ′
iµ

′
j

M
+

ηµ′
iµ

′
j

2(t− η)M

}

which is negative, since µ′
i, µ

′
j > 0. Hence, users on the non-default platform are always harmed

by the default. For the default platform, we have

∂u∗
i (x)
∂σ

= η
∂X∗

i

∂σ
− h

∂α∗
i

∂σ
=

ηµ′
iµ

′
j

2(t− η)M −
µ′

j + µ′
iµ

′
j

M
.
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Some algebra shows that

∂u∗
i (x)
∂Vj

≥ 0 ⇐⇒ η ≤ η̂i ≡
(

2 + 2µ′
i

2 + 3µ′
i

)
t.

Notice that 2
3t < η̂i < t. Thus, if η ≤ 2

3t, the cumulative change in u∗
i (x) must be negative for

any x. But if η is sufficiently close to t, then the cumulative change in u∗
i (x) will be positive

for any x.

Proof of Proposition 4

Proof. As shown in the proof of Proposition 5, the derivatives of Wc look like

∂Wc

∂Vi

= X∗
i

∂u∗
i

∂Vi

+X∗
j

∂u∗
j

∂Vi

,

where j ̸= i. It is easy to verify that ∂u∗
i /∂Vi > 0 in all cases. In Proposition ??, we established

that the cross-derivatives ∂u∗
j/∂Vi are always positive when η ≤ 2

3t. Thus, the latter inequality
implies that Wc is strictly increasing in Vi for each i. In this case, default agreements (involving
either platform) will strictly reduce consumer welfare. As in earlier proofs, let µ′

i ≡ µ′(z̃∗
i ) and

M ≡ µ′
1 + µ′

2 + 3µ′
1µ

′
2. Recall from Proposition 5 that

∂Wc

∂Vi

= X∗
i

(
1 −

µ′
j + µ′

1µ
′
2

M
+ ηµ′

1µ
′
2

2(t− η)M

)
+X∗

j

(
µ′

i + µ′
1µ

′
2

M
− ηµ′

1µ
′
2

2(t− η)M

)

= µ′
i + µ′

1µ
′
2

M
+X∗

i

µ′
1µ

′
2

M︸ ︷︷ ︸
always positive

+ (X∗
i −X∗

j ) ηµ′
1µ

′
2

2(t− η)M︸ ︷︷ ︸
negative when i = 2

The last term in this sum diverges as η → t. Thus, ∂Wc/∂V2 is negative for sufficiently large η.
Since making platform j the default is equivalent to reducing Vi by σ, this implies that a default
agreement involving platform 1 will raise consumer welfare when η is sufficiently large.
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Proof of Proposition 5

Proof. We want to compare the derivatives ∂Wc

∂V1
and ∂Wc

∂V2
. As in previous proofs, let µ′

i ≡ µ′(z̃∗
i ),

M ≡ µ′
1 + µ′

2 + 3µ′
1µ

′
2. Using results from the proof of Proposition 2, we find

∂Wc

∂V2
=
∫ X∗

1

0

∂u∗
1(x)
∂V2

dx+
∫ X∗

1

0

∂u∗
1(x)
∂V2

dx+ u∗
1(X∗

1 )∂X
∗
1

∂V2
− u∗

2(X∗
1 )∂X

∗
1

∂V2︸ ︷︷ ︸
= 0, since u∗

1(X∗
1 ) = u∗

2(X∗
1 )

= X∗
1
∂u∗

1(x)
∂V2

+X∗
2
∂u∗

2(x)
∂V2

= X∗
1

(
η
∂X∗

1
∂V2

− h
∂α∗

1
∂V2

)
+X∗

2

(
1 − η

∂X∗
2

∂V2
+ h

∂α∗
2

∂V2

)

= X∗
1

(
µ′

2 + µ′
1µ

′
2

M
− ηµ′

1µ
′
2

2(t− η)M

)
+X∗

2

(
1 − µ′

1 + µ′
1µ

′
2

M
+ ηµ′

1µ
′
2

2(t− η)M

)
.

A symmetric argument shows that

∂Wc

∂V1
= X∗

1

(
1 − µ′

2 + µ′
1µ

′
2

M
+ ηµ′

1µ
′
2

2(t− η)M

)
+X∗

2

(
µ′

1 + µ′
1µ

′
2

M
− ηµ′

1µ
′
2

2(t− η)M

)
.

With these results, we can check the inequality ∂Wc

∂V1
> ∂Wc

∂V2
. After simplification, we find

∂Wc

∂V1
≥ ∂Wc

∂V2
⇐⇒ (X∗

1 −X∗
2 )
[

t

t− η

]
µ′

1µ
′
2 ≥ µ′

2 − µ′
1.

The lefthand side is positive and diverges as η → t. Thus, the inequality is definitely true if
µ(·) is convex (implying the righthand side is nonpositive) or if η is sufficiently large. However,
if µ(·) is concave and η is small, then the inequality can fail. As an example, one can verify
computationally that the inequality usually fails when µ(z) = ln(1 + z), η = 0, and h

2t
≤ 1.

Proof of Proposition 6

Proof. A type-z advertiser’s payoff from joining platform i is π∗
i (z) = (α∗

i − p∗
i − z)X∗

i =
(z̃∗

i − z)X∗
i . Thus, aggregate advertiser profits are

Wa =
∫ z̃∗

1

z
(z̃∗

1 − z)X∗
1f(z)dz +

∫ z̃∗
2

z
(z̃∗

2 − z)X∗
2f(z)dz

= z̃∗
1X

∗
1F (z̃∗

1) −X∗
1

∫ z̃∗
1

z
zf(z)dz + z̃∗

2X
∗
2F (z̃∗

2) −X∗
2

∫ z̃∗
2

z
zf(z)dz. (47)
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Applying integration by parts to these integrals:
∫ z̃∗

i

z
zf(z)dz = z̃∗

i F (z̃i) −
∫ z̃∗

i

z
F (z)dz.

Plugging this into (47) and simplifying, we get

Wa = X∗
1

∫ z̃∗
1

z
F (z)dz +X∗

2

∫ z̃∗
2

z
F (z)dz. (48)

To prove this proposition, it is sufficient to show that ∂Wa

∂∆ > 0. As in previous proofs, let
µ′

i ≡ µ′(z̃∗
i ) and M ≡ µ′

1 + µ′
2 + 3µ′

1µ
′
2. Differentiating w.r.t. ∆, we find

∂Wa

∂∆ = ∂X∗
1

∂∆

∫ z̃∗
1

z
F (z)dz +X∗

1F (z̃∗
1)∂z̃

∗
1

∂∆ + ∂X∗
2

∂∆

∫ z̃∗
2

z
F (z)dz +X∗

2F (z̃∗
2)∂z̃

∗
2

∂∆

= ∂X∗
1

∂∆

(∫ z̃∗
1

z
F (z)dz −

∫ z̃∗
2

z
F (z)dz

)
+X∗

1F (z̃∗
1) µ

′
2

hM
−X∗

2F (z̃∗
2) µ

′
1

hM

= µ′
1µ

′
2

2(t− η)M

(∫ z̃∗
1

z̃∗
2

F (z)dz + µ(z̃∗
1)

µ′
1
F (z̃∗

1) − µ(z̃∗
2)

µ′
2
F (z̃∗

2)
)
,

where the second and third lines use results from the proof of Proposition 2 and the third line
also uses (12) to substitute X∗

i = h
2(t−η)µ(z̃∗

i ). Assumptions 1-2 imply the RHS is positive.

Proof of Proposition 7

Proof. Technically, a platform’s willingness to pay for default status depends on whether it
believes the alternative involves its rival acquiring default status or neither platform obtaining
default status. However, if total platform profits (∑i Π∗

i ) are strictly increasing in ∆ (which
we will now prove), then the proposition is true either way. Using (11) and (12), platform i’s
equilibrium profits can be written as

Π∗
i = Z∗

i X
∗
i p

∗
i = mh

2(t− η)F (z̃∗
i )µ(z̃∗

i )2.
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As in previous proofs, let µ′
i ≡ µ′(z̃∗

i ), M ≡ µ′
1 + µ′

2 + 3µ′
1µ

′
2, and ∂∆ ≡ ∂

∂∆ . Differentiating
total platform profits w.r.t. ∆ yields

∂∆
∑

i

Π∗
i = mh

2(t− η)
∑

i

{
f(z̃∗

i )µ(z̃∗
i )2 + 2F (z̃∗

i )µ(z̃∗
i )µ′

i

}
∂∆z̃

∗
i

= mh

2(t− η)
∑

i

{
µ(z̃∗

i ) + 2µ(z̃∗
i )µ′

i

}
F (z̃∗

i )∂∆z̃
∗
i (using f = F

µ
)

= m

2(t− η)M

{(
µ(z̃∗

1) + 2µ(z̃∗
1)µ′

1

)
F (z̃∗

1)µ′
2 −

(
µ(z̃∗

2) + 2µ(z̃∗
2)µ′

2

)
F (z̃∗

2)µ′
1

}
(using (39))

= mµ′
1µ

′
2

2(t− η)M

{(
µ(z̃∗

1)
µ′

1
+ 2µ(z̃∗

1)
)
F (z̃∗

1) −
(
µ(z̃∗

2)
µ′

2
+ 2µ(z̃∗

2)
)
F (z̃∗

2)
}
.

This is positive, because z̃∗
1 > z̃∗

2 and
(

µ(z)
µ′(z) + 2µ(z)

)
F (z) is a strictly increasing function. (The

latter is implied by Assumptions 1 and 2.) This completes the proof.

Proof of Proposition 8

Proof. As in previous proofs, let µ′
i ≡ µ′(z̃∗

i ) and M ≡ µ′
1 + µ′

2 + 3µ′
1µ

′
2. Using the results from

the proof of Proposition 2, we have

∂X∗
i

∂σi

= λiµ′
1µ

′
2

2(t− η)M > 0, ∂X∗
i

∂σj

= − λjµ′
1µ

′
2

2(t− η)M < 0

for each i and j ̸= i. Notice that the definitions of X i
i , and Xj

i imply

X i
i = Xi + λj(σ1 + σ2)

2t , Xj
i = Xi − λi(σ1 + σ2)

2t . (49)

These identities hold in equilibrium, too. Differentiating, we find

∂X i∗
i

∂σi
= λiµ′

1µ
′
2

2(t− η)M + λj

2t ,
∂Xj∗

i

∂σi
= λiµ′

1µ
′
2

2(t− η)M − λi

2t .

Clearly ∂Xi∗
i

∂σi > 0. And a bit of algebra shows that

∂Xj∗
i

∂σi
< 0 ⇐⇒ η <

(
M − µ′

iµ
′
j

M

)
t.

Since η ≤ 2
3t (by assumption) and M−µ′

iµ
′
j

M
> 2

3 , this ensures ∂Xj∗
i

∂σi < 0.
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6.0.1 Proof of Proposition 9

Proof. As in previous proofs, let µ′
i ≡ µ′(z̃∗

i ) and M ≡ µ′
1 + µ′

2 + 3µ′
1µ

′
2. For each i and j ̸= i,

define
ψi ≡ ∂u1

i

∂Vj

= ∂u2
i

∂Vj

=
µ′

j + µ′
iµ

′
j

M
−

ηµ′
iµ

′
j

2(t− η)M .

By inspection, ψi < 1. In the proof of Proposition 3, we showed that η ≤ 2
3t implies ψi > 0. In

the extension being considered, it is straightforward to verify that default agreements have the
following marginal effects on consumer utility:

∂ui
i

∂σi
= −λiψi

∂ui
j

∂σi
= −(1 − λiψj) (50)

∂uj
i

∂σi
= −λiψi

∂uj
j

∂σi
= λiψj (51)

The effect on the bottom right is positive, but the rest are negative. Part (i) follows from the
fact that both effects in the first line are negative. To prove the other parts, we first show that
X∗

1ψ1 > X∗
2ψ2. We have:

X∗
1ψ1 −X∗

2ψ2 = X∗
1
µ′

2 + µ′
1µ

′
2

M
−X∗

2
µ′

1 + µ′
1µ

′
2

M
− (X∗

1 −X∗
2 ) ηµ′

1µ
′
2

2(t− η)M

= µ′
1µ

′
2

M

(
X∗

1
µ′

1
− X∗

2
µ′

2
+ (X∗

1 −X∗
2 )
[

2t− 3η
2(t− η)

])

= hµ′
1µ

′
2

2(t− η)M

(
µ(z̃∗

1)
µ′

1
− µ(z̃∗

2)
µ′

2
+ (µ(z̃∗

1) − µ(z̃∗
2))
[

2t− 3η
2(t− η)

])
(52)

where the third line follows from (12). Assumptions 1 and 2 ensure that µ(z̃∗
1) > µ(z̃∗

2) and
µ(z̃∗

1 )
µ′

1
>

µ(z̃∗
2 )

µ′
2

. Thus, the expression in (52) is guaranteed to be positive when η ≤ 2
3t. Differen-

tiating Wj
c w.r.t. σi (j ̸= i), we find

∂Wj
c

∂σi
= Xj∗

i

∂uj
i

∂σi
+Xj∗

j

∂uj
j

∂σi
= λi

[
Xj∗

j ψj −Xj∗
i ψi

]
Because X1∗

1 > X∗
1 and X1∗

2 < X∗
2 (using Proposition 8), this implies

∂W1
c

∂σ2 = λ2
[
X1∗

1 ψ1 −X1∗
2 ψ2

]
> λ2

[
X∗

1ψ1 −X∗
2ψ2

]
> 0,

where the final inequality follows from (52). This establishes part (ii). As for platform 1’s
spillover, it is

∂W2
c

∂σ1 = λ2
[
X2∗

2 ψ1 −X2∗
1 ψ2

]
= λ2

[
X∗

2ψ2 −X∗
1ψ1 + (ψ1 + ψ2)

λ1(σ1 + σ2)
2t

]
,

where the second equality uses (49). Since X∗
1ψ1 > X∗

2ψ2, this expression can be positive only
if σ1 + σ2 is sufficiently large. This establishes part (iii).
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Proof of Proposition 10

Proof. As in previous proofs, let µ′
i ≡ µ′(z̃∗

i ) and M ≡ µ′
1 +µ′

2 + 3µ′
1µ

′
2. Let ψi be as defined in

the proof of Proposition 9, and recall that ψi > 0 when η ≤ 2
3t. Using results from the previous

proof, we obtain

∂Wc

∂σi
= λi

[
X i∗

i

∂ui
i

∂σi
+X i∗

j

∂ui
j

∂σi

]
+ λj

[
Xj∗

i

∂uj
i

∂σi
+Xj∗

j

∂uj
j

∂σi

]
= λi

[
− λiX i∗

i ψi −X i∗
j (1 − λiψj)

]
+ λj

[
− λiXj∗

i ψi + λiXj∗
j ψj

]
= λi

[
− λiX i∗

i ψi −X i∗
j (1 − λiψj) − λjXj∗

i ψi + λjXj∗
j ψj

]
= λi

[
−X i∗

j +X∗
jψj −X∗

i ψi

]
.

Because X∗
1ψ1 > X∗

2ψ2 (see the previous proof), it follows that

∂Wc

∂σ1 = λ1
[

−X1∗
2 +X∗

2ψ2 −X∗
1ψ1

]
< 0.

This establishes part (i). For the laggard’s contract we have

∂Wc

∂σ2 = λ2
[

−X2∗
1 +X∗

1ψ1 −X∗
2ψ2

]
. (53)

If σ1 = σ2 = 0, then X2∗
1 = X∗

1 , in which case the fact that ψi < 1 implies that this expression
is negative. However, as σ1 and/or σ2 increase, X2∗

1 falls, and the expression becomes positive
when X2∗

1 < X∗
1ψ2 − X∗

2ψ2. Thus, the overall welfare effect, Wc(σ1, σ2) − Wc(σ1, 0) could be
positive if σ1 is positive or if σ1 = 0 and σ2 is sufficiently large. We use a constructive proof to
show that this is indeed possible. Consider the linear model from Example 1, and let η = .4t.
Using the example, along with definitions in Section 3, this implies

X∗
1 = 1

2 + λ1∆1 + λ2∆2

6t = 1
2 + ∆0 + λ1σ1 − λ2σ2

6t ,

where ∆0 ≡ V1 − V2 > 0. Using (49), the browser-level market shares are

X1∗
1 = 1

2 + ∆0 + (1 + 2λ2)σ1 + 2λ2σ2

6t , X1∗
2 = 1 −X1∗

1

on browser 1 and

X2∗
1 = 1

2 + ∆0 − 2λ1σ1 − (1 + 2λ1)σ2

6t , X2∗
2 = 1 −X2∗

1

on browser 2. It is also easy to verify that ψ1 = ψ2 = 1
3 . Thus, after some algebra, we find

∂Wc

∂σ2 = λ2
[

−X2∗
1 +X∗

1ψ1 −X∗
2ψ2

]
= λ2

18t
[
8λ1σ1 + (1 + 8λ1)σ2 − 9t− ∆0

]
. (54)
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Conditional on σ1, let σ̃2(σ1) be the value of σ1 that sets this derivative equal to zero. Then

σ̃2(σ1) = 9t+ ∆0

1 + 8λ1 −
(

8λ1

1 + 8λ1

)
σ1.

Now define σ̂1 by σ̃2(σ̂1) = 0. Then

σ̂1 = 9t+ ∆0

8λ1

If σ1 ≥ σ̂1, then any default contract by the laggard (i.e. any σ2 > 0) will increase aggregate
consumer welfare. But we must confirm that this can happen in an interior equilibrium. Writing
shares as a function of (σ1, σ2), this requires that X1∗

1 (σ̂1, 0) < 1 and X2∗
1 (σ̂1, 0) > 0. Using the

above results, it is easy to verify that X2∗
1 (σ̂1, 0) > 0 is true for all parameter values. As for the

other constraint, it is satisfied if λ1 is sufficiently large (equivalently, if λ2 is sufficiently small):

X1∗
1 (σ̂1, 0) < 1 ⇐⇒ λ1 ≥ 9t+ ∆0

14t− 2∆0

For this inequality to be feasible, it must be that

9t+ ∆0

14t− 2∆0 < 1 ⇐⇒ ∆0 < 5
3t.

This constraint on t and ∆0 is easily satisfied in an interior equilibrium. For example, if t = ∆0

and σ1 = σ̂1, any default agreement by the laggard will raise aggregate welfare iff λ1 > 5
6 . Can

a laggard default contract raise aggregate welfare if σ1 = 0? Since the derivative ∂Wc/∂σ
2 is

linear and negative when σ1 = σ2 = 0, this would require that σ2 > 2σ̃2(0). But we must
check that this is compatible with interiority. Checking this, we find that X1∗

1 (0, 2σ̃2(0)) < 1
iff λ1 > 15t+5∆0

42t−4∆0 , which is feasible iff
∆0 < 3t.

Separately, we find that X2∗
1 (0, 2σ̃2(0)) > 0 if λ1 > 5t+∆0

4∆0−4t
, which is feasible if

∆0 > 3t.

These feasibility constraints are exact opposites. Thus, σ2 = 2σ̃2(0) is just barely too big to
generate an interior equilibrium. However, such an equilibrium could be obtained if µ were
concave rather than linear. In that case we would have ψ1 > ψ2 (also ψ1 can be larger than 1

2
if µ is sufficiently concave). This would allow the derivative in (53) to become positive at lower
values of σ2. A lower value of η also makes it easier for the laggard’s contract to raise welfare,
since this makes ψ1 and ψ2 larger. These points establish part (ii).

Proof of Proposition 11

Proof. Given quality levels V1 and V2, let Π∗
i = Π∗

i (V1, V2) denote platform i’s equilibrium
profits in the baseline game when there are no defaults. Fix a type v ∈ [v, v]. If it enters, its
profit (ignoring its investment cost) would be Π∗

2(V1, v). This is positive iff v2 > ṽ, where ṽ is

41



pinned down by
V1 − ṽ = ∆crit. (55)

Recall that ∆crit is the threshold value of ∆ such that platform 2 is inactive whenever ∆ ≥ ∆crit.
Thus, types v ≤ ṽ = V1 − ∆crit will not invest anything (y∗(v) = 0). Now fix a type v > ṽ.
Conditional on investing y, its ex-ante expected profits are

ρ(y)Π∗
2(V1, v) − y.

Since ρ′′(y) < 0, this is strictly concave in y. The Inada condition limy→0 ρ
′(y) = ∞ ensures

that the optimal investment, y∗, is a positive number that solves the first order condition

ρ′(y∗)Π∗
2(V1, v) − 1 = 0. (56)

Treating the solution as a function y∗ = y∗(v), we can totally differentiate this equation w.r.t.
v and rearrange to get

∂y∗(v)
∂v

= −
ρ′(y∗(v))∂Π∗

2(V1,v)
∂v

ρ′′(y∗(v))Π∗
2(V1, v)

> 0. (57)

This shows that the optimal investment y∗(v) is strictly increasing in v whenever the optimal
investment is positive.

When platform 1 is the default, the effects on the entrants payoffs are equivalent to simply
reducing v by σ. In this case, the threshold ṽ increases to ṽ+ ≡ V1 + σ − ∆crit. Additionally,
every type v > ṽ+ now invests less: it now behaves as if its type is v − σ, which induces a
smaller investment, since ∂y∗/∂v > 0. These effects obviously imply that the probability of
entry strictly decreases. By contrast, if platform 2 is the default, then these effects are reversed,
so the probability of entry increases.

Because η ≤ 2
3t, we know that defaults by either firm strictly reduce static consumer welfare.

It also implies that consumers are better off with a competitive laggard than with platform 1
being a monopolist. That is, Wc(V1, V2) > WM

c for any quality levels (V1, V2) such that both
firms are active in the baseline game. Here Wc = Wc(V1, V2) is the static consumer welfare
function from the main text, and WM

c gives consumer welfare when platform 1 is a monopolist.
It turns out that WM

c = 1
2t.

48 Expected consumer welfare is

G(ṽ)WM
c +

∫ v

ṽ

{
ρ(y∗(v))Wc(V1, v) + [1 − ρ(y∗(v))]WM

c

}
dG(v).

Under a default agreement, the post-entry static welfare level for any type v falls from Wc(V1, v)
to either Wc(V1, v − σ) or Wc(V1 − σ, v). This effect, taken alone, reduces expected consumer
welfare. But there is also an effect on the probability of entry, as noted above. If platform 1 is
the default, the probability falls, further reducing expected consumer welfare. Hence, expected
consumer welfare definitely falls when platform 1 is the default. By contrast, when platform

48When platform 1 is a monopolist, it sets α1 so that u1(1) = 0, i.e. the consumer at location x = 1 gets
exactly zero utility from joining platform 1. This is the largest α1 that ensures all consumers join platform 1.
This implies that a consumer’s equilibrium utility is just u1(x) = (1 − x)t. This leads to an aggregate consumer
welfare level of 1

2 t. Hence consumer welfare does not depend on the monopolist’s quality (V1).
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2 is the default, the probability of entry increases. In this case, the net change in expected
consumer welfare is in general ambiguous. If the increase in the probability of entry is large
enough, then it will increase.

For example, because platform 2’s default reduces ṽ to ṽ− ≡ V1 − σ − ∆crit, it will necessarily
raise the welfare contributions from all types v ∈ (ṽ−, ṽ + ε) for sufficiently small ε > 0. All of
these types contribute positive amounts to expected consumer welfare. But absent the default,
types v ∈ (ṽ−, ṽ] would contribute nothing to welfare and types v ∈ (ṽ, ṽ+ ε) would contribute
very little, since y∗(v) would be close to zero in a right-neighborhood of v = ṽ. Now suppose that
G assigns almost all probability to types in v ∈ (ṽ−, ṽ + ε). Then the default would obviously
increase expected consumer welfare. This is because the dynamic increase in the probability of
entry is especially large, since the most likely types are those who make nontrivial investments
only when platform 2 is the default. By contrast, if probability density is concentrated mainly
on high types who are already very likely to enter even without a default, then the default has
little effect on the probability of entry, and it would reduce expected welfare.

Proof of Proposition 12

Proof. As we saw in the proof of Proposition 5, the derivatives of Wc take the form

∂Wc(r)
∂σ

= X∗
1
∂u∗

1
∂σ

+X∗
2
∂u∗

2
∂σ

.

As in previous proofs, let µ′
i ≡ µ′(z̃∗

i ) and M ≡ µ′
1 + µ′

2 + 3µ′
1µ

′
2. Using the results from the

proof of Proposition 2, we have

∂u∗
1

∂σ
= −

(
h
∂α∗

1
∂∆ − η

∂X∗
1

∂∆

)

= −
(
µ′

2 + µ′
1µ

′
2

M
− (1 − r)ηµ′

1µ
′
2

2(t− η)M

)

= −
(
µ′

2 + µ′
1µ

′
2

M
− ηµ′

1µ
′
2

2(t− η)M

)
− rηµ′

1µ
′
2

2(t− η)M

And, by a similar process, we find

∂u∗
2

∂σ
= −

(
1 − µ′

1 + µ′
1µ

′
2

M
+ ηµ′

1µ
′
2

2(t− η)M

)
− rηµ′

1µ
′
2

2(t− η)M (58)

43



Therefore

∂Wc(r)
∂σ

= −X∗
1

(
µ′

2 + µ′
1µ

′
2

M

)
−X∗

2

(
1 − µ′

1 + µ′
1µ

′
2

M

)
(59)

+ (X∗
1 −X∗

2 ) ηµ′
1µ

′
2

2(t− η)M − (X∗
1 +X∗

2 ) rηµ′
1µ

′
2

2(t− η)M (60)

= ∂Wc(r)
∂σ

∣∣∣∣∣
r=0

− rηµ′
1µ

′
2

2(t− η)M (61)

The first term, ∂Wc(r)
∂σ

|r=0, is simply the welfare derivative from the baseline game, which cor-
responds to r = 0. Clearly the righthand side is strictly decreasing in r.

Proof of Proposition 13

Proof. Treating X∗
i as a function of ∆, S1 ≡ X∗

1 (V1 − V2 + σ) − X∗
1 (V1 − V2) and S2 ≡

X∗
2 (V1 − V2 − σ) − X∗

2 (V1 − V2). It is easy to see from the linear model example (Section 2.4)
that S1 = S2 in that case. More generally, it is clear that S2 > S1 is implied by X∗

1 being
strictly concave in ∆. Recall from the proof of proposition 2 that

∂X∗
1

∂∆ = µ′
1µ

′
2

2(t− η)M ,

where µ′
i ≡ µ′(z̃∗

i ) and M ≡ µ′
1 + µ′

2 + 3µ′
1µ

′
2. It follows that X∗

1 is strictly concave in ∆ if and
only if

µ′
1µ

′
2

µ′
1 + µ′

2 + 3µ′
1µ

′
2

= 1
1

µ′
2

+ 1
µ′

1
+ 3

is strictly increasing, which is equivalent to the condition that 1
µ′

1
+ 1

µ′
2

is strictly increasing in

∆. Taking the derivative of this expression, and using the fact that ∂z̃∗
1

∂∆ = µ′
2

hM
and ∂z̃∗

2
∂∆ = − µ′

1
hM

,
we find that 1

µ′
1

+ 1
µ′

2
is strictly increasing iff

ϕ(z̃∗
1) <

(
µ′

1
µ′

2

)2

ϕ(z̃∗
2), (62)

where ϕ(z) ≡ d ln µ′(z)
dz

= µ′′(z)
µ′(z) . To complete the proof, we assume that ϕ is strictly decreasing

(which is equivalent to strict log-concavity of µ′) and show that this implies inequality (62).
Note that z̃∗

1 > z̃∗
2 and µ′

i > 0 (by Assumption 1). Then the inequality is obviously true if either
(a) ϕ(z̃1) = 0 < ϕ(z̃∗

2); (b) ϕ(z̃1) < 0 = ϕ(z̃∗
2); or (c) ϕ(z̃∗

1) < 0 < ϕ(z̃∗
2). There are just two

other possibilities. If 0 < ϕ(z̃∗
1) < ϕ(z̃∗

2), then it must be that µ is strictly convex (µ′′(z) > 0)
over this range. This implies that µ′

1
µ′

2
> 1, in which case (62) is clearly true. Finally, suppose

that ϕ(z̃∗
1) < ϕ(z̃∗

2) < 0. This corresponds to µ being strictly concave µ′′(z) < 0. This implies
that µ′

1
µ′

2
∈ (0, 1). Then, keeping in mind that both ϕ(z̃∗

1) and ϕ(z̃∗
2) are negative in this case,

this implies once again that (62) is true.

44



Proof of Proposition 14

Proof. There is now a small mass w > 0 of captives, along with a unit mass of “normal” types.
Both types are uniformly distributed. Recall that δi = 1 if platform i is the default and δi = 0
otherwise. We will use a superscript of δ1δ2 to indicate whether a default is in effect (δ1δ2 = 10
or δ1δ2 = 01) or whether a consumers face a choice screen (δ1δ2 = 00). Let x̃δ1δ2 be the marginal
normal type consumer. It is pinned down by the indifference condition

uδ1δ2
1 (x̃δ1δ2) = uδ1δ2

2 (x̃δ1δ2)
⇐⇒ V1 − δ2σ +Xδ1δ2

1 η − hα1 − tx̃δ1δ2 = V2 − δ1σ +Xδ1δ2
2 η − hα2 − t(1 − x̃δ1δ2), (63)

where consumer demand levels, Xδ1δ2
i , are now given by

Xδ1δ2
1 =


x̃10 + w, if δ1δ2 = 10
x̃01, if δ1δ2 = 01
(1 + w)x̃00, if δ1δ2 = 00,

Xδ1δ2
2 =


1 − x̃10, if δ1δ2 = 10
1 − x̃01 + w, if δ1δ2 = 01
(1 + w)(1 − x̃00), if δ1δ2 = 00.

(64)

This reflects the fact that, under a default, all captives subscribe to the default platform. By
contrast, under a choice screen, captive and normal types are equivalent, and x̃00 is the marginal
location for both types. Notice that Xδ1δ2

1 +Xδ1δ2
2 = 1 + w in all cases.

Using the above expressions, when a default is in effect, the marginal location is given by one
of the following two expressions:

x̃10 = 1
2 + V1 − V2 + σ + wη − h(α1 − α2)

2(t− η) , x̃01 = 1
2 + V1 − V2 − σ − wη − h(α1 − α2)

2(t− η) . (65)

By contrast, under a choice screen, the marginal location is

x̃10 = 1
2 + V1 − V2 − h(α1 − α2)

2[t− (1 + w)η] . (66)

Notice that the denominator is different under a choice screen. As a result, in this extension, a
default leads the demand functions to undergo both a shift and a “twist” (a change in slope).
However, the twists are symmetric, and we can suppress them by imposing α1 = α2 = 0. This
leads to the following expressions for the vertical shifts

X10
1 −X00

1 = σ + wt

2(t− η) − (V1 − V2)wt
2(t− η)[t− (1 + w)η]

X01
2 −X00

2 = σ + wt

2(t− η) + (V1 − V2)wt
2(t− η)[t− (1 + w)η] .

The first (resp. second) expression gives the magnitude of the demand shifts when the dominant
platform (resp. laggard) is the default. So long as (1 + w)η < t (which is necessary for both
firms to be active), the laggard’s default generates strictly larger vertical shifts.

Analogous to the baseline game, platform profits are Πi = mF (z̃i)Xδ1δ2
i pi. It is easy to verify
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that the FOC p∗
i = µi(z̃∗

i ) continues to apply in all cases in this extension. Additionally, when
a default is in effect, the second FOC is also the same: Xδ1δ2∗

i = h
2(t−η)µ(z̃∗

i ). However, under
a choice screen, the second FOC changes slightly: it becomes x̃00∗ = h

2(t−η)µ(z̃∗
1) for platform 1

and 1 − x̃00∗ = h
2(t−η)µ(z̃∗

2) for platform 2.

When demand is linear, z is drawn from the uniform distribution on [0, ℓ], so that F (x) = z/ℓ
and µ(z) = z. The FOC p∗

i = µ(z̃∗
i ) thus implies p∗

i = z̃∗
i and thus α∗

i = p∗
i + z̃∗

i = 2z̃∗
i . Plugging

these expressions into the FOCs and solving the equations, we find the following equilibrium
results. First, when platform 1 is the default:

x̃10∗ = 5 − 4w
10 + V1 − V2 + σ + wη

10(t− η) , X10∗
1 = x̃10∗ + w, X10∗

2 = 1 − x̃10∗

z̃10∗
1 = p10∗

1 =
(

5 + 6w
5

)
t− η

h
+ V1 − V2 + σ + wη

5h

z̃10∗
2 = p10∗

2 =
(

5 + 4w
5

)
t− η

h
− V1 − V2 + σ + wη

5h

When platform 2 is the default:

x̃01∗ = 5 + 4w
10 + V1 − V2 − σ − wη

10(t− η) , X01∗
1 = x̃01∗, X01∗

2 = 1 − x̃01∗ + w

z̃01∗
1 = p01∗

1 =
(

5 + 4w
5

)
t− η

h
+ V1 − V2 − σ − wη

5h

z̃01∗
2 = p01∗

2 =
(

5 + 6w
5

)
t− η

h
− V1 − V2 − σ − wη

5h

Finally, under a choice screen:

x̃00∗ = 1
2 + V1 − V2

10[t− (1 + w)η] , X00∗
1 = (1 + w)x̃00∗, X00∗

2 = (1 + w)(1 − x̃00∗)

z̃00∗
1 = p00∗

1 = t− (1 + w)η
h

+ V1 − V2

5h , z̃00∗
2 = p00∗

2 = t− (1 + w)η
h

− V1 − V2

5h

Using these expressions, we can calculate equilibrium demand responses of defaults:

S1 = X10∗
1 −X00∗

1 = σ + wη + V1 − V2

10(t− η) − (1 + w)(V1 − V2)
10[t− (1 + w)η]

S2 = X10∗
2 −X00∗

2 = σ + wη − (V1 − V2)
10(t− η) + (1 + w)(V1 − V2)

10[t− (1 + w)η]

This implies
S2 − S1 = (V1 − V2)wt

5(t− η)[t− (1 + w)η] > 0,

as desired. By inspection, this difference is proportional to the difference in the magnitudes of
the vertical demand shifts (computed earlier).
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Proof of Proposition 15

Proof. Part (i). Let Π∗
i (Vi, Vj) denote a platform’s profits as a function of (Vi, Vj). Platform i’s

willingness to pay (WTP) depends on its disagreement payoff. If it believes that disagreement
would lead platform j to acquire default rights, then its WTP is Π∗

i (Vi, Vj −σ) − Π∗
i (Vi −σ, Vj).

But if platform j is banned from acquiring default rights, then disagreement simply preserves
the status quo, and hence platform i’s WTP is Π∗

i (Vi, Vj − σ) − Π∗
i (Vi, Vj). The latter WTP is

strictly smaller than the former, which establishes the desired result.

Part (ii). In the proof of Proposition 7, we showed that total platform profits (Π∗
1 + Π∗

2) are
strictly increasing in ∆. When ∆ gets large enough, platform 1 becomes a monopolist. This
establishes the desired result.

Appendix B: Supplementary Material

B.1. The European Android Choice Screen

This figure shows the choice screen that Google was ordered to offer on Android devices within
the European Economic Area. The order of search engines on the choice screen is randomized.

Figure 1: The Android choice screen implemented in the EEA.
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B.2. Concavity/Convexity of µ

To help understand the relevance of the concavity or convexity of µ(·), it is helpful to define
the following locus of points:

Z∗ =
{
(z̃1, z̃2)

∣∣∣µ(z̃1) + µ(z̃2) = 2(t−η)
h

, µ(z̃1) ≥ 0, µ(z̃2) ≥ 0
}

(67)

Using (11), (12), and (13), this locus contains all the different equilibria in which both platforms
are active—one for each value of ∆ ∈ (−∆crit,∆crit).49 It traces out a curve in the plane, and
the shape of this curve is relevant to certain results in the paper. In the figure below, we plot
different possible shapes of Z∗, which corresponds to different functional forms of µ(z). Because
we assume ∆ > 0, we are only interested in the portion of Z∗ that lies above the 45-degree
line. When ∆ = 0, the equilibrium is at the intersection of Z∗ and the 45-degree line. As ∆
increases, the equilibrium point travels northwest along the curve until it terminates at (z̃m, z)
when ∆ = ∆crit. (For simplicity, the figure assumes that z = 0.)

z̃2

z̃1

45◦
z̃m

z̃m

Z∗
2

Z∗
1

Z∗
3

Figure 2: Examples of Z∗ corresponding to different functional forms of µ(·).

In the figure, the examples Z∗
1 , Z∗

2 , and Z∗
3 correspond to µ(·) being convex, linear, and concave,

respectively. Starting at a point ∆ ∈ (0,∆crit), a small increase in ∆ always leads to an increase
in z̃1 and a decrease in z̃2, but the relative magnitudes of these effects depend on the shape
of µ. If µ is convex, then the change in z̃1 is small and the change in z̃2 is large, while the
opposite is true when µ is concave. The same is true of the relative changes in α1 and α2. This
is because αi = z̃i + pi, and we know from (13) that the changes in p1 and p2 are always equal
in magnitude (i.e. ∂p1

∂∆ = −∂p2
∂∆ ).

Thus, when µ is convex, a default agreement involving the dominant firm generates a small
increase in α1 and a large reduction in α2. But if µ is concave, then the deal generates a large
increase in α1 but only a small reduction in α2. Since larger values of α1 and α2 are associated
with lower consumer welfare but higher platform profits, this tells us about how the curvature
of µ relates to the welfare and profit effects of default agreements. When µ is convex, a small
increase in ∆ is less detrimental to consumer welfare, but also less conducive to total platform
profits (Π1 + Π2). But when µ is concave, a small increase in ∆ increases total platform profits
significantly, but it is also especially harmful to consumers.

49Following (11), for a given pair (z̃1, z̃2) ∈ Z∗, the corresponding prices are (p1, p2) = (µ(z̃1), µ(z̃2)).
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B.3. Device-Level Subsidization and Pass-Through

In other industries, default-like arrangements are extremely common, and yet they usually do
not arouse any controversy. One key reason for this is that such arrangements often serve to
reduce production costs, and some of those savings will be passed through to consumers.50

This could offset the adverse effects of the choice restrictions. Many of the firms Google pays
for default status are mobile device makers, such as Apple, Samsung, and LG. This raises the
question of whether any adverse competitive effects of search engine default agreements might
be offset by price cuts at the device-level. If so, however, the mechanism driving the price cuts
would have to be something other than the manufacturing economies discussed above. Search
engines and choice screens are purely digital, so we have no reason to think that these default
agreements reduce the cost of producing mobile devices.

An alternative possibility is that Google’s large payments to device makers could act like a
subsidy, inducing device makers to offer lower prices. This is a common argument for why
default agreements could potentially be procompetitive. To test it directly would require a
larger model encompassing both search engine competition and mobile device competition,
which is beyond the scope of this paper. However, we can shed some light on it by identifying
some challenges one would have to overcome to make the subsidization argument work.

First, recent empirical work finds no evidence of price effects. If default agreements lead to
significant device-level price cuts, then one would expect prices to rise if a regulator proscribed
default agreements and ordered device makers to offer a choice screen instead. Regulators in
Europe and several other jurisdictions recently did just that for Android devices. Decarolis
et al. (2024) studied the effects of this shift, and they found no evidence that it had any impact
on device prices.

Second, the payment structure in search engine default agreements is not conducive to signifi-
cant price effects. Consider the Apple agreement as an example. Google’s payments to Apple
are not based on iPhone sales. Rather, Google pays Apple a share of the advertising revenue it
earns from user activity on Safari. For this reason, most iPhone sales have no effect on Google’s
payments to Apple, and hence are not “subsidized” at all. If Apple cuts the iPhone’s price, it
will sell more units, but most of those new sales will be upgrades by existing iPhone users.51

Those users’ search activity was already contributing to Apple’s payments, so these iPhone
sales have no effect on the default payments.

Third, the default payments give device makers an incentive to raise switching costs (e.g. by
making it harder to switch browsers) to steer consumers toward Google, since this will increase
their payments. This effect would exacerbate the anticompetitive effects of default agreements.
Finally, note that the subsidization argument does not apply to all default agreements, be-
cause many of the firms who control search access points do not sell anything to consumers.
For example, Mozilla’s Firefox browser is free to consumers, so the Firefox default agreement

50For example, Ford does not let a consumer choose what brand of tires their car comes with. A consumer
who strongly prefers a different brand will have to buy them herself, which is costly. While this creates a strong
bias in favor of the default tire brand, it is cost-efficient for Ford to commit to a single brand.

51One recent study finds that more than 80% of iPhone sales are upgrades by existing iPhone users. Potuck
(2023) summarizes the study.
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obviously will not generate any offsetting price effects.

Finally, as the next result shows, even the largest possible device-level price cut may not be
big enough to offset the harm to consumers. In the best-case scenario, the dominant platform
would pay its full WTP for default status, and the device maker would fully pass through that
amount to consumers. In such a case, whether consumers are left better off overall depends on
whether the default agreement raises the dominant platform’s profits by more than it reduces
consumer welfare. For an infinitesimal switching cost, this boils down to the requirement that

∂Π∗
1

∂σ
≥ −∂W∗

c

∂σ
(68)

Assuming η ≤ 2
3t, it is straightforward to verify that the following inequality is a necessary

condition for (68):
m

h
[1 + 2µ′

1(z̃∗
1)]F (z̃∗

1)X∗
1 ≥ 1 + 3µ′(z̃∗

1)X∗
1 . (69)

This inequatlity will fail if m
h

is not too large.
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